
CoLocation Center for Academic and Industrial Cooperation

Faculty of Informatics

Eötvös Loránd University

Advancing Data-Driven Robotics with
Transfer and Curriculum Learning

written by

Dániel Horváth

Supervisor: Dr. Zoltán Istenes, PhD

Industrial Supervisor: Dr. Ferenc Gábor Erdős, PhD

Campus France Internship Supervisor: Prof. Fabien Moutarde, PhD

Doctoral School of Informatics
Head: Prof. Zoltán Horváth, PhD

Doctoral Program of Information Systems
Head : Prof. András Benczúr, PhD

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science

DOI: 10.15476/ELTE.2024.375

Budapest, 2024

“La science n’a pas de patrie, parce que
le savoir est le patrimoine de l’humanité,
le flambeau qui éclaire le monde.”

“Science has no homeland, because
knowledge is the heritage of humanity,
the torch that illuminates the world.”

Louis Pasteur

i

Abstract

The deep learning revolution has fundamentally reshaped numerous fields, including
robotics. However, as in other fields, certain challenges must be overcome to exploit the
power of deep learning algorithms and create truly adaptive intelligent robots. The dif-
ficulty lies less in adult-level intelligence than in the skills of perception and mobility,
also referred to as Moravec’s paradox. In this context, the key issues are transferability
and universality. This thesis addresses data-driven robotics, with a focus on transfer and
curriculum learning. My main contributions are as follows.

Robots operating in unstructured environments need to effectively sense and interpret
their surroundings. A major challenge for deep learning models in the field of robotics
is the lack of domain-specific labelled data for various industrial applications. To bridge
the reality gap, I developed a sim2real transfer learning method based on domain ran-
domization for object detection (S2R-ObjDet), enabling automatic generation of labelled
synthetic data. In addition, I propose the generalised confusion matrix (GCM) which ad-
dresses the limitations of the classical precision-recall-based metrics. I also introduce a
public and annotated real-world dataset of industrial objects (InO-10-190) for evaluating
sim2real object detection methods.

In object manipulation, it is essential to estimate not only object positions but also
their poses. Thus, I propose two vision-based, multi-object grasp pose estimation models –
the real-time MOGPE-RT and the high-precision MOGPE-HP – as well as the extension
of the S2R-ObjDet method to pose estimation (S2R-PosEst). This framework provides an
industrial tool for rapid data generation and model training while requiring minimal data
from the target distribution.

Reinforcement learning – inspired by human learning – aims to offer a universal solu-
tion to various problems. Nevertheless, the field of robotics poses significant challenges.
To facilitate the exploration of reinforcement learning robot agents, I propose a data ex-
ploitation curriculum learning method, called highlight experience replay (HiER). The
experimental results demonstrate that HiER significantly improves the performance of the
state-of-the-art, exhibiting stochastic dominance over them. To further enhance HiER, I in-
troduce HiER+, which integrates an arbitrary data collection curriculum learning method
for which I propose the easy2hard initial state entropy method (E2H-ISE).

Although the results presented in this thesis are my own, henceforth, I will
use plural wording for stylistic purposes. The implementations, the qualitative re-
sults, the video presentations, and further materials are available on the project site:
www.danielhorvath.eu/thesis.

ii

http://www.danielhorvath.eu/thesis/

Kivonat
A mély tanulás forradalma alapjaiban változtatta meg számos tudományterületet,

beleértve a robotikát is. Azonban, ahhoz, hogy a mélytanulási algoritmusok lehetőségeit
kiaknázzuk és adapt́ıv, intelligens robotokat hozzunk létre, bizonyos kih́ıvásokat le kell
küzdeni. A nehézség elsősorban az érzékelési és mozgási képességek elsaját́ıtásában rejlik
mintsem a felnőtt szintű intelligencia elérésében (Moravec-paradoxon). A legfőbb kih́ıvások
a transzferabilitás és az univerzalitás. A dolgozatban ezen kih́ıvásokra koncentrálva,
a transzfer- és a curriculum tanulás (CL) seǵıtségével ḱıvánok megoldásokat adni. Fő
eredményeim a következők.

Strukturálatlan környezetben működő robotoknak képeseknek kell lenniük észlelni
és értelmezniük a környezetüket. A mélytanulási modellek alkalmazásának egyik fő
akadálya a feladat-specifikus ćımkézett adatok hiánya. A valóság és a szimuláció
közötti különbség áthidalása érdekében kifejlesztettem egy domén randomizáción alapuló
sim2real tudástranszfer módszertant objektum detektáláshoz (S2R-ObjDet), amely
lehetővé teszi ćımkézett szintetikus adatok automatikus generálását. Továbbá, javaslom a
generalizált zavarmátrixot (GCM) ami a klasszikus precizitás-szenzitivitás alapú metrikák
hiányosságaira ḱınál megoldást. Ezenḱıvül késźıtettem egy nyilvános és annotált, valós
ipari tárgyakból álló adatbázist (InO-10-190).

Objektumok mozgatásához nem csak a poźıciójuk, hanem az orientációjuk ismerete
is szükséges. Ennek érdekében, két, gépi látáson alapuló, több objektum egyidejű
megfogási helyzetének becslésére alkalmas modellt javaslok – a valós idejű MOGPE-RT
és a nagy pontosságú MOGPE-HP modelleket. Továbbá az S2R-PosEst módszertant mely
az S2R-ObjDet metódus kiterjesztése orientáció becslésre. Ez a keretrendszer ipari eszközt
biztośıt a gyors adatgeneráláshoz és modelltréninghez, miközben minimális valós adatot
igényel.

A megerőśıtéses tańıtás (RL) – az emberi tanulást mintául véve – univerzális megoldást
ḱıván nyújtani különféle problémákra. Ugyanakkor a robotika jelentős kih́ıvásokat
álĺıt. A robotágensek hatékony tańıtásának érdekében javaslom a kiemelt tapasztalati
puffer (HiER), adatkiaknázó CL módszeremet, mely jelentősen jav́ıtja a state-of-the-art
módszerek teljeśıtményét. Ennek továbbfejlesztésére, bevezetem a HiER+ módszert,
amelyben a HiER egy tetszőleges adatgyűjtési CL módszerrel egészül ki, például az általam
javasolt easy2hard kezdeti állapot entrópia módszerrel (E2H-ISE).

Bár a disszertációban bemutatott eredmények a saját munkám, a továbbiakban
stilisztikai okokból a többes szám első személyt fogom használni. Az implementációk,
kvalitat́ıv eredmények, videó prezentációk és további anyagok elérhetők a disszertáció
weboldalán: www.danielhorvath.eu/thesis.

iii

http://www.danielhorvath.eu/thesis/

Acknowledgements
First and foremost, I would like to express my deepest gratitude to my supervisors, Zoltán
Istenes, Gábor Erdős, and Fabien Moutarde for their invaluable guidance and continuous
support throughout this journey. I am also immensely thankful for the fruitful collabora-
tion with my article co-authors, Jesús Bujalance, Sándor Földi, Kristóf Bocsi, and Tomáš
Horváth.

I sincerely appreciate the members of the jury and reviewers for their time, effort, and
thoughtful evaluation. Your expertise and feedback are invaluable, and I am grateful for
your important contributions to this process.

I extend my heartfelt appreciation to József Váncza and László Monostori for provid-
ing me with the tools and freedom to pursue my research. I am also indebted to Richard
Beregi for his mentorship during my student’s projects. Additionally, I deeply appreci-
ate the support of Zsolt Kemény, András Kovács, Emma Takács, Tamás Cserteg, Bence
Tipary, Gergely Horváth, Mátyás Hajós, Markó Horváth, Ádám Juniki, Nelli Nyisztor,
Tekla Tóth, Kristóf Abai, Peter Smejkál, Bálint Laza, Péter Dobrovoczki, Ambrus Tamás,
Julia Bergmann, János Nacsa, Imre Paniti, Judit Megyery, and everyone else who has
supported me in one way or another.

Engaging in a nine-month research internship at Mines Paris was an amazing experi-
ence. I am deeply grateful to Fabien Moutarde for the opportunity, and to Bassam Abdallah
for his assistance. I would also like to extend my appreciation to Thomas Gilles, Camille
Truong-Allié, Joseph Gesnouin, Arthur Moreau, Sascha Hornauer, Raphael Chekroun,
Louis Soum-Fontez, Hugo Blanc, Fábio Elnecave Xavier, Jules Sanchez, Sofiane Horache,
Sami Jouaber, and everyone else who welcomed me into the lab and for the engaging
discussions.

I also appreciate the support of my friends throughout this journey: Sára Fejes, Nick
Durrant, Márton Grósz, Mathilde Jacques, Paloma Tannous, Gergely Hunyady, Péter
Gönczöl, Gergely Juhász, Dániel Uzseka, Bálint Borosnyay, Bálint Prohászka, Gábor Deme,
András Mészáros, Péter Szirtes, Nicolas Cavaillès-Wurmser, Eduarda Kleinsorge, Zoltán
Remecz, Virgilia Sanguedolce, Louis Guisnet and to the rest of my friends!

I am deeply grateful to my amazing girlfriend, Caroline, whose love, support, and belief
in me have been my greatest source of strength. Thank you for always being by my side!
Je remercie également Françoise, Phong, Céline et Chris pour tout leur soutien.

Végül, de nem utolsó sorban szeretném megköszönni a családomnak az egész életemen
át tartó folyamatos támogatást, anyukámnak, apukámnak, nagyszüleimnek és a család
többi tagjának egyaránt. Nélkületek nem sikerült volna!

iv

Acknowledgement of research projects and funding

This work was supported by European Union within the framework of the Artificial
Intelligence National Laboratory under Project RRF-2.3.1-21-2022-00004.

My internship at the Centre for Robotics at the École Nationale Supérieure des Mines
de Paris, University Paris Sciences & Lettres in the framework of “Campus France Bourse
du Gouvernement Français – Bourse Excellence Hongrie” was funded by the Government
of France.

v

Table of Contents

Abstract ii

Kivonat iii

Acknowledgements iv

List of Figures xi

List of Tables xvii

List of Algorithms xx

Abbreviations xxi

Summary of Notation xxvi

1 Introduction 1

1.1 Context: Adaptive robots . 2

1.2 Problem statement: Transferability and universality 4

1.3 Contribution . 5

1.4 Outline . 8

vi

2 Theoretical background 9

2.1 Computer vision . 11

2.1.1 Problem formulation . 11

2.1.2 Convolutional neural networks . 13

2.1.3 Vision transformers . 15

2.1.4 Image classification . 16

2.1.5 Object detection and pose estimation 18

2.2 Transfer learning . 22

2.2.1 Definitions and notations . 22

2.2.2 Sim2real object detection . 23

2.3 Reinforcement learning . 24

2.3.1 Markov decision process . 25

2.3.2 Multi-goal tasks . 25

2.3.3 Reward functions . 26

2.3.4 Demonstrations . 28

2.3.5 Categorization of RL algorithms . 28

2.3.6 Tabular reinforcement learning . 30

2.3.7 Reinforcement learning in robotics 30

2.3.8 Evaluation of RL algorithms . 33

2.4 Curriculum learning . 34

2.4.1 Easy2hard curriculum learning . 35

2.4.2 Generalised curriculum learning . 36

2.4.3 CL in supervised learning . 37

2.4.4 CL in reinforcement learning . 37

vii

3 Sim2real knowledge transfer for object detection 38

3.1 Introduction . 40

3.2 Related work . 43

3.3 The S2R-ObjDet method . 47

3.3.1 Sim2real knowledge transfer . 47

3.3.2 Data generation . 49

3.3.3 Training . 57

3.4 Evaluation protocol . 57

3.5 Generalised confusion matrix for object detection 58

3.6 The InO-10-190 dataset . 61

3.7 Results . 64

3.7.1 Zero-shot transfer (ZST) . 66

3.7.2 One-shot transfer (OST) . 69

3.8 Ablation study . 74

3.8.1 Seed . 74

3.8.2 Texture and post-processing . 75

3.8.3 Data size . 76

3.8.4 Gravity, positional disturbance, and bounding-box calculation . . . 77

3.8.5 Cutouts . 79

3.8.6 Faster R-CNN . 79

3.9 Robotic application . 80

3.10 Conclusion . 81

4 Sim2real grasp pose estimation 85

4.1 Introduction . 86

4.2 Problem statement . 88

4.3 Related works . 89

4.4 Approach . 90

viii

4.4.1 Object detection with S2R-ObjDet 90

4.4.2 ROI cropping . 91

4.4.3 Orientation estimation with S2R-PosEst 91

4.4.4 Pattern matching (optional) . 93

4.5 Robot control architecture . 94

4.6 Results . 96

4.6.1 Setting of the robotic experiments 96

4.6.2 Object detection . 97

4.6.3 Orientation estimation . 97

4.6.4 Robotic grasping . 98

4.7 Conclusion . 99

5 Highlight experience replay 102

5.1 Introduction . 103

5.2 Related works . 105

5.2.1 Data exploitation . 106

5.2.2 Data collection . 106

5.3 Method . 109

5.3.1 HiER . 109

5.3.2 E2H-ISE . 112

5.3.3 HiER+ . 115

5.4 Results . 115

5.4.1 Evaluation protocol . 118

5.4.2 Aggregated results across all tasks 119

5.4.3 Panda-Gym . 122

5.4.4 Gymnasium-Robotics Fetch . 123

5.4.5 Gymnasium-Robotics PointMaze 123

5.4.6 Qualitative evaluation . 128

ix

5.4.7 HiER λ, HiER ξ, and E2H-ISE c versions 130

5.4.8 TD3 and DDPG . 130

5.5 Conclusion . 130

6 Conclusions 137

6.1 Summary of thesis achievements . 138

6.2 Future work . 139

APPENDICES 141

A Machine learning 142

A.1 Context . 142

A.2 Formulation . 143

A.3 Neural networks . 144

A.4 Deep learning . 145

B Control theory and reinforcement learning 147

C Safe reinforcement learning 150

D Tabular reinforcement learning 156

E Detailed results of HiER and HiER+ 158

References 161

x

List of Figures

2.1 Comparison of classification, object detection, and instance segmentation
from [105]. 12

2.2 Architecture of VGG16 [111]: The feature extractor is composed of succes-
sive convolutional layers (with ReLU activations) and max pooling layers,
while the classification head comprises fully connected layers with ReLU
activations. The image has been adapted from [112]. 15

2.3 Confusion matrix. 18

2.4 The comparison of axis-aligned bounding boxes and oriented bounding boxes. 19

2.5 An example of the precision-recall curve from [116]. The colour bar indicates
the τcon threshold values. 21

2.6 The agent–environment interaction in a Markov decision process [73]. The
done flag is not depicted. 25

2.7 Top. The architecture of the traditional actor-critic model. The actor and
the critic are trained separately. Bottom. The architecture of DDPG. The
actor and the critic are trained together. As the value function Q(st, at) is
the target for the actor, the policy can be deterministic. For training, the
policy must be deterministic because sampling would disrupt the continuity
of the gradient. 33

2.8 Illustration of the easy2hard CL from [98]. 35

2.9 Illustration of the continuation method from [163]. 36

xi

3.1 Top. Pipeline of knowledge transfer. Bottom. Flowchart diagram of our
data generation, training, and evaluation process. The picture of the Boston
bull is from ImageNet [70]. 41

3.2 Some examples of the textures used from [222]–[224]. 51

3.3 Post-process transformation on a blank image. 56

3.4 Generalised confusion matrix (GCM). In the cyan frame, the traditional
10× 10 confusional matrix for the 10 classes. The correct detections are in
the diagonal, marked with red dotted lines. An extra row is added, marked
in green, to the predictions that do not belong to any ground truth object
(false positives). Furthermore, an extra column is added, marked in yellow,
for the objects that were not found (false negatives). Finally, for simplicity,
marked in orange, the extra square at the bottom right of the matrix which
is zero by definition. In this example, it can be seen at a glance, that several
(62) bonnet objects were misclassified as body objects, and only 16 bonnet
objects were classified correctly. 60

3.5 The selected industrial parts in the InO-10-190 dataset. Their names in
order of their identifier numbers are the following: 1. L-bracket, 2. U-
bracket, 3. angle bracket, 4. seat, 5. pipe clamp, 6. handle, 7. bonnet, 8.
body, 9. ball, 10. cable shoe. The letter ‘F’ designates the camera holder
frame. The green dashed lines show the borders of the cropped images. . . 62

3.6 The 3D models of the selected industrial parts in the InO-10-190 dataset.
Their names in order of their identifier numbers are the following: 1. L-
bracket, 2. U-bracket, 3. angle bracket, 4. seat, 5. pipe clamp, 6. handle, 7.
bonnet, 8. body, 9. ball, 10. cable shoe. Their scaling factors are different
for better visualization. 62

3.7 The similarity of the body and the bonnet objects. 63

3.8 Samples of our public and annotated InO-10-190 dataset (cropped version). 64

3.9 Class distributions of the InO-10-190 dataset. 65

3.10 Two examples of synthetic images with the automatically generated anno-
tations. The bounding boxes are shown here for illustration purpose only. . 66

3.11 Results of the ZST BEST models. Left. The precision-recall curves. Right.
The F1 scores. The train and valid scores overlap and are relatively close to
the perfect 100% score. 67

3.12 The average mAP50 scores of the ZST BEST models in the different classes. 69

xii

3.13 Class specific results of the ZST BEST1 model. Left. The precision-recall
curves on the cropped images. Right. The GCM is evaluated on the
cropped images with τcon = 0.8. 70

3.14 Qualitative evaluation. Left. An accurate example. Right. An inaccurate
prediction. Both are the results of the ZST BEST1 model with τcon = 0.8.
The colour-coding follows Fig. 3.9. 71

3.15 Results of the OST BEST models. Left. The precision-recall curves. Right.
The F1 scores. The train and valid scores overlap and are relatively close to
the perfect 100% score. 72

3.16 The average mAP50 scores of the OST BEST models in the different classes. 74

3.17 Class specific results of the OST BEST3 model. Left. The precision-recall
curves on the cropped images. Right. The GCM on the cropped images
with τcon = 0.8. 75

3.18 Qualitative evaluation. Left. An accurate example. Right. An inaccurate
prediction. Both are the results of the OST BEST3 model with τcon = 0.8.
The colour-coding follows Fig. 3.9. 76

3.19 Results of the ablation study on the original images (ZST models). Model
without added textures (-T), without post-processing methods (-PP), and
without both (-TPP). 77

3.20 The setup of the robotic application. 81

3.21 Information flow in the robotic application. The computer vision module,
which is the main topic of this chapter, is highlighted in orange. In this
application, the force sensor was not used (marked with the dashed line).
The following software resources were used: [232]–[236]. 82

4.1 Top. Illustration of our S2R-ObjDet and S2R-PosEst methods. Bottom.
The flowchart diagram of our multi-object grasp pose estimation (MOGPE)
methods. 87

4.2 The data flow of the ROI cropping method. 92

4.3 The proposed CNN architecture for orientation estimation. Abbreviations
are Conv: convolutional layer, FC: fully connected layer K: kernel size, FM:
number of feature maps, A: activation function. 93

4.4 Examples of the generated synthetic training dataset. 94

xiii

4.5 The robot control architecture. With blue colour, the version of the
MOGPE-RT model, while with orange colour, the version of the MOGPE-
HP model. 95

4.6 Experimental setup. 96

4.7 An accurate (a) and an inaccurate (b) prediction. The orientation of the
arm is slightly tilted in the latter case. Regarding the object detection, both
examples are accurate. 99

5.1 Overview of HiER and HiER+. For every episode, the initial state is sampled
from µ0. After every episode, the transitions are stored in Bser, and in case
the λ condition is fulfilled then in Bhier as well. For training, the transitions
are sampled from both Bser and Bhier according to the ratio ξ. For a detailed
description, see Algorithm 1 and 2. 105

5.2 Visualization of the effect of parameter c on µ0 in a 2D case where state
s = [sx, sy]. The initial state s0 = [s0,x, s0,y] is sampled from the probability
distribution µ0(c). 114

5.3 HiER compared to the state-of-the-art across all tasks with 95% CIs. Both
HiER version outperform their corresponding baseline. HiER [HER] yields
the best performance in all metrics. The point estimates are presented in
Tab. 5.2. 120

5.4 Performance profiles across all tasks with 95% CIs. Left: run-score dis-
tribution, right: average-score distribution. The red-dotted line shows the
median values while the areas under the performance profiles correspond
to the mean values (comparing with Tab. 5.2, the average-score distribu-
tion needs to be examined). Both HiER and HiER [HER] have stochastic
dominance over their corresponding baselines. 121

5.5 Probability of improvement of HiER versions compared to their correspond-
ing baselines and themselves across all tasks with 95% CIs. The average
probabilities from top to bottom are the following: 0.76, 0.88, and 0.85. . . 121

5.6 Learning curves of HiER and HiER+ with E2H-ISE compared to the state-
of-the-art based on success rates on the push, slide, and pick-and-place tasks
of the Panda-Gym robotic benchmark with 95% CIs. 124

5.7 Aggregate metrics on the push, slide, and pick-and-place tasks of the Panda-
Gym robotic benchmark with 95% CIs. HiER (blue) and both versions of
HiER+ (purple and magenta) significantly outperform the baselines (gray).
E2H-ISE alone could slightly improve the performance of the baseline. . . . 124

xiv

5.8 Performance profiles (run-score distribution) on the push, slide, and pick-
and-place tasks of the Panda-Gym robotic benchmark with 95% CIs. . . . 125

5.9 Probability of improvement on the push, slide, and pick-and-place tasks of
the Panda-Gym robotic benchmark with 95% CIs. The average probabilities
from top to bottom: 0.625, 0.857, 0.86, 1.0, 1.0, 0.99, 0.99, 1.0, 1.0, and 1.0. 125

5.10 Learning curves of HiER compared with its baselines on push, slide, and
pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark with 95%
CIs. 126

5.11 Aggregate metrics on the push, slide, and pick-and-place tasks of the
Gymnasium-Robotics Fetch benchmark with 95% CIs. Both HiER (blue)
and HiER [HER] (magenta) significantly outperform the baselines (light
blue and purple). 127

5.12 The tasks of Gymnasium-Robotics PointMaze environment [246]. The mazes
were custom-made, thus we named them accordingly. The layouts (b) and
(d) show the placement of the walls and the possible start and target posi-
tions from a top view. The environment is based on the MuJoCo simula-
tor [188]. 129

5.13 Learning curves of HiER compared with its baselines on the Gymnasium-
Robotics PointMaze environment with 95% CIs. 129

5.14 The analysis of HiER λ versions (a) and (b), and HiER ξ versions (c). ξ is
fixed at 0.5 for (a) and (b). HiER λ ama parameters: λ0 = −50, λmax = −10
M = 0 and w = 20. The without version indicates that HiER was not used. 131

5.15 Comparison of different HiER λ methods on the slide task of the Panda-
Gym benchmark with 95% CIs. The predefined λ method is seemingly
superior, although the CIs with the fix λ method overlap. HiER λ ama

parameters: λ0 = −50, λmax = −10 M = 0 and w = 20. The profiles of
HiER λ are depicted on Fig. 5.14 (b). 132

5.16 Comparison of different HiER ξ methods on the slide task of the Panda-Gym
benchmark with 95% CIs. The fix ξ = 0.25, ξ = 0.5, and the prioritized
appear to be the best versions in this order, although their CIs overlap. . . 132

5.17 Comparison of different E2H-ISE c methods on the slide task of the Panda-
Gym benchmark with 95% CIs. The parameters of the methods and the
point estimates are presented in Tab. 5.6. 132

xv

5.18 Comparison of the TD3 and DDPG versions of HiER+ with their baselines
on the push, slide, and pick-and-place tasks of the Panda-Gym benchmark
with 95% CIs. The point estimates are presented in Tab. 5.7. 134

A.1 Field of artificial intelligence, following [108]. 143

C.1 A comparison of model-driven, data-driven, and combined approaches
from [265]. 151

C.2 Safety levels from [265]. 152

C.3 The SQRL approach from [273]. 153

C.4 The recovery RL approach from [275]. 154

C.5 The predictive safety filter from [278]. 154

C.6 Illustrations of three different notions of state-wise safety from [271]. Left.
safety after convergence. Middle. safety during training with hard con-
straints. Right. safety during training with progressive safe exploration. . 155

xvi

List of Tables

3.1 Summary of related works. Abbreviations are the following Sim: Simu-
lator, Synt: Synthetic, Img: Images, P&P: Pick-and-place, Segm: Seg-
mentation, Class: Classification, ObjDet: Object detection, Nav: Naviga-
tion, FrR-CNN: Faster R-CNN, MJC: MuJoCo [188], Gaz: Gazebo [190],
PyB: PyBullet [192], V-R: V-REP [216], UE4: Unreal Engine [197],
OGL: OpenGL [217], DFP: DART [218], FleX [219], Pyrender [220], Blen:
Blender [137], acc: accuracy, a: domain adaptation (otherwise domain ran-
domization), u: unlabelled. The AP and mAP scores are with IoU=0.5.
YCB [221]. 48

3.2 The most relevant input parameters of the data generator module in terms
of object generation. Param: Parameter. 52

3.3 The most relevant input parameters of the data generator module in terms
of image rendering. Param: Parameter. 54

3.4 The types of noises in post processing. 56

3.5 The most relevant advanced data augmentation tools in the training process. 57

3.6 Summary of the InO-10-190 dataset. 65

3.7 The mAP50 scores of the ZST BEST models in the different test groups. . . 68

3.8 The mAP50 scores of the ZST BEST models for the different classes. 70

3.9 Training datasets. 71

3.10 The mAP50 scores of the OST BEST models in the different test groups. . . 73

3.11 The mAP50 scores of OST BEST models for the different classes. 73

xvii

3.12 The mAP50 scores of ZST BEST models with different seeds. 76

3.13 The mAP50 scores of different ZSTmodels. -T: without texture, -PP: without
post processing, -TPP: without post processing and texture. 78

3.14 The mAP50 scores of ZST BEST models with different data sizes. 78

3.15 The mAP50 scores of ZST models without different factors. -G: no gravity,
-R: no randomness in grid positions and no gravity, 8P: 8-point bounding
box calculation. 78

3.16 The mAP50 scores of ZST models with different cutouts at the post-
processing method. 79

3.17 The mAP50 scores of R101-FPN Faster R-CNN model. 80

4.1 The mAP50 scores of the object detection model. 97

4.2 The success rate of the pose estimation model. An estimation is considered
successful if it is within 10 degrees of the ground truth. 98

4.3 Results of the robotic grasping experiment. 99

5.1 Summary of related works. 107

5.2 HiER compared to the state-of-the-art across all tasks. For the reward, there
is no universal desirable target, thus there is no OG value. The column-
wise best results are marked in bold. Both HiER version outperform their
corresponding baseline. HiER [HER] yields the best performance in all metrics.120

5.3 Simplified summary of our results on the push, slide, and pick-and-place
tasks of the Panda-Gym robotic benchmark based on success rates. The
column-wise best results are marked in bold. The full table with all the
configurations is presented in Tab. E.1. 126

5.4 HiER compared to the state-of-the-art based on success rates on push, slide,
and pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark. The
column-wise best results are marked in bold. 127

5.5 HiER compared to the state-of-the-art based on success rates on the
Gymnasium-Robotics PointMaze environment. The column-wise best re-
sults are marked in bold. 131

xviii

5.6 The effect of the E2H-ISE c methods on the success rates on the Panda-

Slide-v3 task. HiER parameters: λ mode predefined and ξ fix with
ξ = 0.5. E2H-ISE parameters: self-paced Ψlow = 0.2, Ψhigh = 0.8 and
δ = 0.05; control: ψ = 0.8 and δ = 0.01; control adaptive: ∆ = 0.2,
ψmax = 0.9, and δ = 0.01. The row-wise best results are marked in bold. . . 133

5.7 HiER+ compared to the state-of-the-art based on success rates on the
Panda-Gym robotic benchmark in the case of TD3 and DDPG. The column-
wise best results for TD3 and DDPG separately are marked in bold. 134

A.1 Some definitions of artificial intelligence, organised into four schools of
thought from [258]. 143

B.1 Comparison of the most relevant terms and their formulations of control
theory and reinforcement learning. 148

E.1 HiER and HiER+ compared to the state-of-the-art based on success rates
on the Panda-Gym robotic benchmark. On the left side of the header, the
components of the specific algorithm are displayed (HER, PER, ISE, HiER).
The column-wise best results are marked in bold. 159

E.2 HiER and HiER+ compared to the state-of-the-art based on the evaluation
rewards on the Panda-Gym robotic benchmark. On the left side of the
header, the components of the specific algorithm are displayed (HER, PER,
ISE, HiER). The desired performance scores for the OG metric are -10, -
20, and -30 for the push, slide, and pick-and-place tasks respectively. The
column-wise best results are marked in bold. 160

xix

List of Algorithms

1 HiER . 110
2 HiER+ . 116

xx

Abbreviations

A2C advantage actor-critic 28, 29, 31

AABB axis-aligned bounding box 12, 18, 19, 55, 88

AGI artificial general intelligence 5

AI artificial intelligence 3, 5, 11, 142

AMI autonomous machine intelligence 5

AP average precision 20, 45, 46, 48, 68

API application programming interface 49

AVG average, arithmetic mean 68, 70, 73, 76, 78–80, 97, 98

BB bounding box 18–20, 55, 78

CI confidence interval 33, 34, 119, 130

CL curriculum learning iii, 5, 35–37, 115, 139

CMDP constrained Markov decision process 151, 152

CNN convolutional neural network 13–16, 18, 20, 43, 48, 57, 91–94, 97

CV computer vision 11, 12

DA domain adaptation 23, 50

xxi

DCNN deep convolutional neural network 41, 42, 46

DDPG deep deterministic policy gradient 28, 29, 32, 33, 104, 117, 130, 134, 135

DL deep learning 3, 4, 40, 42, 86, 142, 144, 146

DNN deep neural network 142

DoF degrees of freedom 46, 80, 88, 89, 98

DP dynamic programming 30, 156, 157

DQN deep Q-learning 28–30

DR domain randomization 23

E2H-ISE our easy2hard initial state entropy method ii, iii, xxxi, 6, 8, 104–109, 112,
114–118, 122, 130, 135, 136, 139

F1 the harmonic mean of precision and recall 20, 40, 58, 59, 61, 67, 71, 72, 84, 138

FOV field of view 53, 66

FPS frames per second 21, 80, 81, 88, 91, 92, 100

GAN generative adversarial network 23

GCM our generalised confusion matrix ii, iii, 6, 8, 40, 42, 43, 58, 60, 61, 64, 72, 81, 82,
84, 138, 140

GIoU generalised intersection over union 20

GPU graphics processing unit 11, 40, 49, 81, 91, 92, 138

GT ground truth 11, 19, 20, 60, 143

HCPS human-cyber-physical system 40

HER hindsight experience replay 103, 104, 106, 107, 109, 110, 115–117, 119, 120, 122,
123, 126–128, 130, 131, 133, 135, 136, 139, 159, 160

HiER our highlight experience replay method ii, iii, 6, 8, 103–105, 107, 109–112, 114–120,
122, 123, 126–128, 130, 131, 133, 135, 136, 139, 140, 158–160

xxii

HiER+ our highlight experience replay method combined with a data collection curricu-
lum learning method, eg.: with E2H-ISE ii, iii, 6, 8, 103–105, 109, 114, 115, 117–119,
122, 126, 128, 130, 134–136, 139, 158–160

i.i.d. independent and identically distributed 24, 29, 31, 32, 143, 144

ILSVRC ImageNet Large Scale Visual Recognition Challenge 13

ImageNet an online dataset for image classification 17, 41, 57

InO-10-190 our dataset of industrial objects, containing 190 images of 920 objects of 10
classes ii, iii, 6, 8, 40, 42, 43, 61, 63, 64, 81–83, 91, 138

IoU intersection over union xxvii, 19, 20, 44, 45, 48, 60, 78

IQM interquartile mean 34, 118–120, 122, 123, 126–128, 131, 134, 159, 160

ISE initial state entropy 104, 136, 139, 159, 160

KAN Kolmogorov-Arnold network 145

LLM large language model 2, 11, 140

mAP mean average precision 20, 21, 40, 43, 44, 48, 57–59, 64, 66–69, 71, 72, 75–77, 82–84,
88, 97, 100, 138

MC Monte Carlo 30, 157

MDP Markov decision process 25, 144, 148, 151, 152

ML machine learning 3, 5, 22, 35, 142–144

MLP multilayer perceptron 13, 15, 145

MOGPE our multi-object grasp pose estimation methods 6, 8, 86, 90, 138

MOGPE-HP our high-precision multi-object grasp pose estimation method ii, iii, 6, 86,
88, 90, 93, 98–100, 138

MOGPE-RT our real-time multi-object grasp pose estimation method ii, iii, 6, 86, 88,
90, 93, 95, 98–100, 138

MPC model predictive control 149, 151, 154

xxiii

MPSC model predictive safety certification 154

MS COCO Microsoft Common Objects in Context, online dataset for object detection
21, 41

MSE mean square error 46, 98

NeRF neural radiance fields 23

NGIM new-generation intelligent manufacturing 40

NN neural network 13, 16, 30, 31, 144, 145

OBB oriented bounding box 19, 88

OG optimality gap 34, 118–120, 126, 127, 131, 134, 159, 160

OST one-shot transfer 65, 71, 72

PER prioritized experience replay 103, 104, 106, 107, 109–112, 115–118, 130, 135, 136,
139, 159, 160

PPO proximal policy optimization 28, 29, 32

PSF predictive safety filter 154

REINFORCE a policy-based reinforcement learning method 28–31

ReLU rectified linear unit 92, 144

RGB red, green, and blue color channels 12, 41–43, 45, 48, 51, 53, 54, 56, 63, 88

RGB-D red, green, blue, and depth channels 12, 53, 54

RL reinforcement learning iii, 5, 24, 25, 28–33, 35, 37, 103, 104, 106, 108, 115, 117, 134,
136, 139, 140, 147–151, 153, 154, 156, 157

ROI region of interest 89–91, 100

ROS robot operating system 43, 80, 81, 94

S2R-ObjDet our sim2real transfer learning method for object detection ii, iii, 6, 8, 40,
42, 43, 47, 58, 64, 65, 81–83, 88, 90, 91, 97, 99–101, 138, 140

xxiv

S2R-PosEst our sim2real transfer learning method for pose estimation ii, iii, xxix, 6, 8,
86, 88, 90, 97, 99, 101, 138, 140

SAC soft actor-critic 28, 29, 32, 33, 104, 117, 130, 135

SARSA state–action–reward–state–action reinforcement learning method 28, 29

SCMDP state-wise constrained Markov decision process 152, 153

SGD stochastic gradient descent 145

SQRL safety Q-functions for reinforcement learning xvi, 153

STD standard deviation 97, 98, 126, 127, 131, 133, 134

TD temporal difference xxx, 30, 106, 107, 111, 112, 157

TD3 twin delayed deep deterministic policy gradient 28, 29, 32, 33, 104, 117, 130, 134,
135

TL transfer learning 4, 22, 23

UAV unmanned aerial vehicles 46, 48

UCB upper confidence bound 28

VAE variational autoencoder 23

ViT vision transformer 15, 16, 57, 91

VLM visual language model 140

XOR exclusive OR 144

ZST zero-shot transfer 65–68, 71, 74, 77, 79

xxv

Summary of Notation

Notation Description
General

R set of real numbers
R+ set of positive real numbers
N set of natural numbers; N = {0, 1, 2, 3, . . .}
Z set of integer numbers
Z+ set of positive integer numbers
.
= equality relationship that is true by definition
≈ approximately equal
← assignment
∅ empty set
∈ is an element of
⊂ subset of
(a, b] the real interval between a and b including b but not in-

cluding a
|S| number of elements in set S
∪ union of sets
∩ intersection of sets
1A=B indicator function that evaluates whether the condition

A = B is true or false
f : X → Y function f from elements of set X to elements of set Y
⌊a⌋ mathematical floor function on a, e.g., ⌊1.6⌋ = 1; ⌊·⌋ : R→

Z
P (X = x) probability that a random variable X takes on the value x

xxvi

X ∼ p random variable X selected from distribution p(x)
.
=

P (X = x)
E[X] expectation of a random variable X, i.e., E[X]

.
=

∑
x p(x)x

argmaxx f(x) value of x where f(x) takes its maximal value
F (τ) tail distribution function at τ , F (τ) = P (X > τ)
d(a, b) distance between a and b
L loss function
U(a, b) uniform distribution between a and b
nr length of a vector r; nr ∈ N
r arithmetic mean of vector r

Machine learning
nx length of the input vector; nx ∈ N
ny length of the output vector; ny ∈ N
nw length of the weight vector; nw ∈ N
x input vector; x ∈ Rnx

y output vector; y ∈ Rny

w weight vector; w ∈ Rnw

Computer vision
cch number of channels of an image; cch ∈ N
w, h width and height of an image in pixels; w, h ∈ Z+

C number of classes; C ∈ Z+

bi bounding box (bi = [xi, yi, wi, hi]) of the i
th detection; bi ∈

[0, 1]4

xi, yi normalized x and y center coordinates of the bounding box
of the of the ith detection; xi, yi ∈ [0, 1]

wi, hi normalized width and height of the bounding box of the
ith detection; wi, hi ∈ [0, 1]

cclassi class label of the ith detection; cclassi ∈ N
pconi confidence score of the ith detection; pconi ∈ [0, 1]
τcon confidence threshold; τcon ∈ [0, 1]
τiou IoU threshold; τiou ∈ [0, 1]
K ∗ I convolution between K and I
P set of a prediction item, e.g., area of the bounding box of

a prediction
GT set of a ground truth item, e.g., area of the bounding box

of a ground truth
SP,GT closest convex shape (e.g., rectangle) enclosing both P and

G

xxvii

JIoU(P ,GT) intersection over union (IoU) or Jaccard index,

JIoU(P ,GT) = |P∩GT |
|P∪GT | ; JIoU(P ,GT) ∈ [0, 1]

JGIoU(P ,GT) generalized intersection over union (GIoU), JGIoU = JIoU−
|SP,GT \(P∪GT)|

|SP,GT | ; JGIoU(P ,GT) ∈ [0, 1]

LIoU IoU loss function; LIoU = 1− JIoU, LIoU : P × G → [0, 1]
D confusion matrix; D ∈ NC×C

Dgen generalized confusion matrix; Dgen ∈ NC+1×C+1

nv length of the feature vector; nv ∈ N
v feature vector; v ∈ Rnv

Transfer learning
X feature space
Y label space
P (X) marginal probability distribution where X =

[x1, x2, x3, ..., xn] ∈ X
f(·) predictive function; f(·) = P (Y | X)
D domain; D = {X , P (X)}
T task; T = {Y , P (Y | X)}
{DS, TS} source domain-task pair
{DT , TT} target domain-task pair
nobj number of objects; nobj ∈ N
ngrid grid size; ngrid ∈ Z+

dspace grid spacing; dspace ∈ R+

dheight position of the grid (initial object position) in z direction;
dheight ∈ R+

rgrid grid position vector before the disturbance in x, y, and z
direction; rgrid ∈ R3

ϵpos normalized translation disturbance vector, the limits of the
magnitude of translations in the x, y, and z directions;
ϵpos ∈ [0, 1]3

Erot rotation disturbance vector, the bounds of rotations in the
x, y, and z directions; Erot ∈ R3×2

robj pose of an object; robj = [robjx , robjy , robjz , robjrx , r
obj
ry , r

obj
rz]

ptexture probability of random texture; ptexture ∈ R
pobjects vector of object selection probabilities; pobjects ∈ Rnobj+2

Rcam matrix describing the camera pose; Rcam ∈ R3×2

Rtarget matrix describing the camera target position; Rtarget ∈
R3×2

xxviii

mwidth vector containing the lower and upper bound of image
width in pixels; mwidth ∈ N2

mheight vector containing the lower and upper bound of image
height in pixels; mheight ∈ N2

θFOV field of view of the camera; θFOV ∈ R
mwidth width of the image in pixels; mwidth ∈ N
mheight height of the image in pixels; mheight ∈ N
mtype type of image (RGB, depth, RGB-D); mtype ∈ {0, 1, 2}
GML performance gap of the model between the train and the

validation sets; GML ∈ [0, 1]
Greality reality gap; Greality ∈ [0, 1]
θi orientation angle of the ith detection computed by the pose

estimation method, before fine-tuning; θi ∈ [−π, π]
θ∗i orientation angle of the ith detection after fine-tuning; θ∗i ∈

[−π, π]
Sθi sin(θi); Sθi ∈ [−1, 1]
Cθi cos(θi); Cθi ∈ [−1, 1]
βres resolution of rotation in the S2R-PosEst method; βres ∈ R
nrot number of rotations in the S2R-PosEst method; nrot ∈ N

Reinforcement learning
S state space, set of all states
A action space, set of all actions
A(s) set of all actions available in state s
R set of all possible rewards, a finite subset of R
G set of all possible goals
s, s′ states; s, s′ ∈ S
a action; a ∈ A
r reward; r ∈ R
γ discount-factor parameter; γ ∈ [0, 1]
µ0 initial state distribution
t discrete time step; t ∈ N
T final time step of an episode; T ∈ N
At action at time t; At ∈ A
St state at time t; St ∈ S
Rt reward at time t; Rt ∈ R
g goal; g ∈ G
π policy (decision-making rule)
πB behaviour policy

xxix

πT target policy
π(s) action taken in state s under deterministic policy π
π(a | s) probability of taking action a in state s under stochastic

policy π
Gt return following time t; Gt ∈ R
Gj return following time 0 of the jth episode; Gj ∈ R
h time horizon; h ∈ N
p(s′, r | s, a) probability of transition to state s′ with reward r, from

state s and action a
p(s′ | s, a) probability of transition to state s′, from state s taking

action a
r(s, a) expected immediate reward from state s after action a;

r : S ×A → R
r(s, a, s′) expected immediate reward on transition from s to s′ under

action a; r : S ×A× S → R
vπ(s) value of state s under policy π (expected return); v : S → R
v∗(s) value of state s under the optimal policy; v∗ : S → R
V, Vt estimates of state-value function vπ or v∗
qπ(s, a) value of taking action a in state s under policy π; q : S ×

A → R
q∗(s, a) value of taking action a in state s under the optimal policy;

q∗ : S ×A → R
Q,Qt estimates of state-value function qπ or q∗
rg reward function parameterised by the goal g ∈ G
Sg set of goal states Sg ⊂ S
Sw, Sd States where the result is a win or a draw; Sw ⊂ S and

Sd ⊂ S
Sf failure states; Sf ⊂ S
δt temporal-difference (TD) error at t (a random variable);

δt ∈ R
d done flag; d ∈ {0, 1}
Ber experience replay
θ, ϕ the weights of the actor and the critic models
E episode

Curriculum learning
Bser standard experience replay
Bhier highlight experience replay
H(µ0) entropy of the initial state-goal distribution

xxx

H(S|G) entropy of the goal-conditioned visited states
j episode index; j ∈ N
k weight update index; k ∈ N
λ threshold for the highlight experience replay; λ ∈ R
ξ sampling ratio between Bser and Bhier for weight update;

ξ ∈ [0, 1]
nbatch batch size for weight update; nbatch ∈ N
nhier batch size of the highlight experience replay for weight up-

date; nhier ∈ N
Dser batch of the data from the standard experience replay for

weight update
Dhier batch of the data from the highlight experience replay for

weight update
D batch of data for weight update; D ← Dser +Dhier

Lhier, Lser TD errors of the training batches Dhier and Dser;
Lhier, Lser ∈ R

αp parameter of prioritization of the highlight experience re-
play; αp ∈ [0, 1]

c parameter of easy2hard initial state entropy method which
controls the initial state entropy; c ∈ [0, 1]

µ0(c) initial state distribution as a function of c
δstep step size in the self-paced and the control E2H-ISE

methods; δstep ∈ [0, 1]
νtrain sequence containing the training success rates; νtrain =

[νtrain1 , νtrain2 , . . . , νtrainntrain
] ∈ [0, 1]ntrain

νeval sequence containing the evaluation success rates; νeval =
[νeval1 , νeval2 , . . . , νevalneval

] ∈ [0, 1]neval

Ψhigh, Ψlow threshold values in the self-paced E2H-ISE method;
Ψhigh, Ψlow ∈ [0, 1]

ψ target success rate in the control E2H-ISE method; ψ ∈
[0, 1]

ψmax maximum value allowed for ψ in the control adaptive

E2H-ISE method; ψmax ∈ [0, 1]
∆ constant shift in the control adaptive E2H-ISE method;

∆ ∈ [0, 1]

xxxi

Chapter 1
Introduction

Contents
1.1 Context: Adaptive robots . 2

1.2 Problem statement: Transferability and universality 4

1.3 Contribution . 5

1.4 Outline . 8

1

1.1 Context: Adaptive robots

Humans learnt to create and utilise tools over two million years ago [9]. Until the first
industrial revolution around 250 years ago, production was based on human and animal
labour. Since then, machines have increasingly taken on a larger role in the production
process [10]. Until the past decades, machines lifted heavy pieces following rule-based
logic for the automotive industry, precisely implanted tiny parts into circuit boards for the
electronics industry, or performed similar processes requiring little intelligence or adaptivity
but high accuracy, speed, and robustness. These tasks are typically described as easy for
machines and hard for humans.

Moravec’s paradox: “It is comparatively easy to make computers exhibit adult level
performance on intelligence tests or playing checkers, and difficult or impossible to give
them the skills of a one-year-old when it comes to perception and mobility” [11]

As the works on traditional, rule-based manufacturing applications saturated, the in-
terest of the scientific community shifted towards tasks that require some sort of adaptive
behaviour or intelligence, primarily in the field of perception and mobility. Oftentimes, the
environment is unstructured and dynamic. For this reason, robots cannot simply execute
a pre-computed path and repeat it many times. They need to perceive and understand
their environment and act according to their goals. Robots started picking and sorting
different objects based on their vision algorithms, precisely assembling parts aided by their
force sensors, collaborating with human workers by predicting their intentions, and au-
tonomously transporting materials, goods, or humans inside factories and cities. Robots
are intelligent machines that can sense, think 1, and act. [12].

In terms of human perception, vision is one of the most essential sensory inputs as it
is inherently high bandwidth. An average 4-year-old has seen 50 times more data than
the state-of-the-art large language models (LLMs) [13]. As a consequence, vision sensors
such as cameras and lidars are widely used in robotics. Nevertheless, humans rely on other
senses as well to perform specific tasks. For assembling fine parts, tactile or force feedback
is essential, while for tuning a musical instrument, the primary feedback mechanism is
auditory. Thus, robots are equipped with different types of sensors according to the tasks
they need to execute.

Regardless of the type of sensor, the raw sensory data must be interpreted, meaning-
ful information extracted, and the subsequent action determined—in essence, the robot

1It is essential to clarify that thinking, in this context, does not imply possessing consciousness or self-
awareness; rather, it refers to the ability to make rational decisions based on the circumstances presented.
For further information, refer to Appendix A.

2

needs to think. The robot’s decision-making process is guided by a model which can be
categorised as either rule-based or data-driven. Rule-based models are created by human
experts who define specific rules, whereas data-driven models learn functions or behaviours
through example-based learning. Data-driven methods fall under the domain of machine
learning (ML). It is important to note that data-driven algorithms have specific human-
designed structures that introduce inductive bias through the set of assumptions embodied
in the given constraints. Models with more inductive bias fall closer to rule-based solutions
than ones with less.

Deep learning (DL) is a subset of ML using deep artificial neural networks to find
complex patterns in data, replacing hand-engineered feature selection with data-driven
feature extraction. As a result, the DL approach reduces the inductive bias at the expense
of requiring a substantially larger amount of data. Revolutionising numerous fields, deep
learning is the flagship of the novel phenomenon commonly referred to as the AI revolution.
In healthcare, the novel algorithms based on DL significantly improved the accuracy of
image analysis in radiology [14]–[16], opened a whole new chapter in drug discovery [17],
[18], and was applied to unravel the secrets of human aging [19]. In psychology, DL
has demonstrated superior performance in mental health outcome research [20], whether
applied to clinical data [21], genomics samples [22], vocal and visual expressions [23], or
social media content [24]. In finance and banking, DL models are applied across various
domains [25], [26], including stock market prediction [27], portfolio management [28], or
fraud detection [29]. In social sciences DL can be utilised for various use cases, such
as classifying social graphs [30] or measuring social inequalities [31]. Furthermore, now
generative AI can create music, text, images, and even videos, pushing the boundaries of
creative industries [32].

The deep learning revolution has dramatically transformed robotics and related fields
as well. Methods based on deep learning outperformed then state-of-the-art rule-based
or shallow machine learning approaches in image classification [33], object detection [34],
[35], image segmentation [36], [37], natural language processing [38]–[41], point cloud and
3D modeling [42]–[48], robotic manipulation [49]–[52], localization [53], trajectory predic-
tion of self-driving cars [54], [55], autonomous drifting [56], traffic forecasting [57], human
gestion recognition [58] or intention prediction [59], human-robot collaboration [60], dog
behaviour modelling for mobile robots [61], health monitoring [62], multi agent environ-
ment exploration [63], and several other domains. Nonetheless, as in other fields, there are
specific challenges that need to be addressed if we want to unleash the full potential of
DL algorithms and create truly adaptive intelligent robots [64]. At a high level, this thesis
focuses on how to overcome some of these obstacles.

3

1.2 Problem statement: Transferability and univer-

sality

One of the most crucial challenges of robotics is that the robotic applications are task-,
robot-, and domain-specific, meaning that if any element of the task-robot-domain triplet is
changed, the carefully engineered or learnt solution may not work anymore. A typical man-
ifestation of this phenomenon is when a robotic agent learns to perform a specific task but
by lacking generalization skills, it fails to execute a slightly modified version of the task (dif-
ferences in tasks). Another case is when a model works perfectly on one robot configuration
but completely fails on another (differences in robots). Finally, a model might work in the
lab or simulation settings but fail in the real world (differences in domains). Transferability
in robotics means transferring knowledge between tasks [65], robots [66], or domains [35],
[1], [4], [67] and falls under the field of transfer learning (TL) [68], [69]. As an example, DL
models work well on the immense online datasets [70], [71], nevertheless, constructing such
datasets for every real-world problem is not feasible. Transfer learning approaches might
attempt to reuse once-learnt knowledge or extract relevant knowledge from more accessible
data, e.g., synthetic images, or general real-world robotic datasets [72]. Transferability is
essential for achieving sufficient scale and robustness of robotic applications in the industry
or our everyday lives.

Emphasising the importance and challenges of scale and robustness, consider a real-
world scenario where a self-driving car is trained on data from European roads. For safety
concerns and economic feasibility, it is required that the car drives safely and reliably
outside of Europe where the traffic signs and even the rules of traffic could be fundamentally
different. While the adaptation to the altered environment does not pose a serious challenge
to human drivers, it is considerably more difficult for machine-learning-based algorithms.

Industrial prototyping is another domain where transferability is key. Introducing a
new product at a high-volume car manufacturer presents a significant challenge. Stopping
the assembly lines for time-consuming training and testing can cause significant downtime
which is economically infeasible. Consequently, engineers utilise virtual environments to
reduce development time in the real environment. Thus, efficiently transferring knowledge
from simulation to the real world – bridging the reality gap – is essential in this attempt.

The endeavour for adaptive robots is coupled not only with transferability but univer-
sality as well. Besides connecting specific tasks, robots, or domains, it is also important to
create fundamentally universal algorithms and methods with a general training framework
that can be applied to a wide range of robotics problems. In an ideal scenario, generic
models can learn to control arbitrary robots to solve various tasks in any given environment

4

(domain) without changing the algorithm or the training process. Reinforcement learn-
ing (RL) [73]–[75] inspired by human/animal learning attempts precisely that by learning
from trial-and-error through interactions with the environment. It is important to note
that transferability and universality are not completely separate concepts as by definition,
universal solutions are easily transferable to other tasks, robots, or domains. Furthermore,
it is worth mentioning that the aforementioned line of research still falls under the field
of narrow AI, and is not equivalent to the academic pursuit of artificial general intelli-
gence (AGI)2.

Even though reinforcement learning achieved superhuman performance in other do-
mains such as playing chess [77], Go [78], or Atari games [79], the field of robotics poses
significant challenges as the state and action spaces are continuous, the reward function is
predominantly sparse, and on many occasions, the agent is devoid of expert demonstra-
tions. These characteristics exacerbate the problem of exploration, leading the robot to
struggle in finding a solution to its given task [2].

In parallel to constructing more efficient RL algorithms such as state-of-the-art actor-
critic models [80]–[83], another line of research focuses on improving existing RL algorithms
with methods based on curriculum learning (CL) [2], [84]–[95]. The core idea of curricu-
lum learning [96]–[98] is that ML models – similarly to human education – might benefit
from an organised training process, e.g., starting with easy tasks (learning addition and
multiplication) and gradually increase the difficulty up to the target (solving differential
equations).

Furthermore, as RL algorithms learn from trial-and-error, meaning that they not only
require ample data (as fast as possible) but also a safe environment where the robot cannot
harm itself or its environment, especially at the early stage of the learning process3. For
these reasons, training RL algorithms in simulation is paramount4. However, the models
must be applied in the physical environment eventually, thus transferring the knowledge
from simulation to the real world is essential once again.

1.3 Contribution

This PhD has been conducted at the Faculty of Informatics at Eötvös Loránd University,
Budapest, Hungary in collaboration with the Institute for Computer Science and Control,
Hungarian Research Network, Budapest, Hungary, and also, in a doctoral internship, at

2Also referred to as AMI or autonomous machine intelligence [76].
3At the early stage of the training, the movement of the robots is close to random.
4There is a line of research on training robots only in real life [99]–[102].

5

the Centre for Robotics at the École Nationale Supérieure des Mines de Paris, University
Paris Sciences & Lettres in the framework of “Campus France Bourse du Gouvernement
Français – Bourse Excellence Hongrie”, funded by the Government of France. Although
the results presented below are claimed to be mine, I use plural wording in the text for
stylistic purposes.

In this thesis, we present our findings on data-driven adaptive robotic systems from the
aspect of transfer and curriculum learning. First, we investigate how to transfer knowl-
edge from simulation to the real world focusing on visual data. Bridging the reality gap,
we introduced a sim2real transfer learning method based on domain randomization for
object detection (S2R-ObjDet), a generalised confusion matrix (GCM) for performance
evaluation, and a public and annotated real-world dataset of industrial objects (InO-10-
190). In addition, we propose two vision-based, multi-object grasp pose estimation models
(MOGPE) – the real-time (MOGPE-RT) and the high-precision (MOGPE-HP) – with the
augmentation of our S2R-ObjDet method with pose estimation (S2R-PosEst). Our frame-
work provides an industrial tool for fast data generation and model training and requires
minimal data from the target distribution. Besides testing the computer vision components
individually, our methods were also validated in a robotic pick-and-place experiment.

Furthermore, we examined how to facilitate the training of reinforcement learning
agents with curriculum learning. We propose a novel data exploitation curriculum learn-
ing method, named the highlight experience replay (HiER). Additionally, to exploit the
full potential of HiER, we introduce HiER+ in which HiER is enhanced with an arbitrary
data collection curriculum learning method. In addition, as an example of the data collec-
tion curriculum learning method, we present the easy2hard initial state entropy method
(E2H-ISE). Our methods significantly outperformed state-of-the-art, validated on 8 tasks
of three robotic benchmarks, focusing on the push, slide, and pick-and-place tasks.

The scope of this work can be defined through the following research questions:

• How to transfer knowledge from simulation to the real world in the case of object
detection? [1]

• How to extend our S2R-ObjDet method to multi-object grasp pose estimation? [4]

• How to improve the training process of state-of-the-art reinforcement learning algo-
rithms with curriculum learning? [2]

The main publications of this thesis in chronological order are as follows:

6

• D. Horváth, G. Erdős, Z. Istenes, T. Horváth, and S. Földi, ‘Object Detection
Using Sim2Real Domain Randomization for Robotic Applications’, IEEE Transac-
tions on Robotics, vol. 39, no. 2, pp. 1225–1243, Apr. 2023, ISSN: 1941-0468. DOI:
10.1109/TRO.2022.3207619.

• D. Horváth, K. Bocsi, G. Erdős, and Z. Istenes, ‘Sim2Real Grasp Pose Estimation
for Adaptive Robotic Applications’, in the 22nd IFAC World Congress, ser. IFACPa-
persOnLine, vol. 56, 2023, pp. 5233–5239. DOI: 10.1016/j.ifacol.2023.10.121.

• D. Horváth, J. Bujalance Mart́ın, F. Gábor Erdos, Z. Istenes, and F. Moutarde,
‘HiER: Highlight Experience Replay for Boosting Off-Policy Reinforcement Learning
Agents’, IEEE Access, vol. 12, pp. 100 102–100 119, Jul. 2024, ISSN: 2169-3536.
DOI: 10.1109/ACCESS.2024.3427012.

The primary research tasks associated with the main articles [1], [4], [2] – including
formulating research questions, proposing solutions, developing and implementing algo-
rithms, designing and executing experiments, analysing and visualising data, and drafting
the manuscripts – were carried out by me. Generally, the co-authors contributed through
supervision, providing periodic feedback and guidance that helped refine the research focus
and presentation. Additionally, Sándor Földi assisted in the data annotation and the ex-
perimentation for [1], while Kristóf Bocsi helped in the experimentation, the robot control,
the camera calibration, and the implementation of the pattern-matching algorithm for [4].

In additional publications, I developed and implemented algorithms for vision-based
adaptive robotic applications, in the context of smart factories, listed chronologically, as
follows:

• Z. Kemény, R. Beregi, J. Nacsa, C. Kardos, and D. Horváth, ‘Human–robot col-
laboration in the MTA SZTAKI learning factory facility at Győr’, in the 8th CIRP
Sponsored Conference on Learning Factories (CLF), ser. Procedia Manufacturing,
vol. 23, Jan. 2018, pp. 105–110. DOI: 10.1016/j.promfg.2018.04.001.

• Z. Kemény, R. Beregi, J. Nacsa, C. Kardos, andD. Horváth, ‘Example of a problem-
to-course life cycle in layout and process planning at the MTA SZTAKI learning
factories’, in the 9th Conference on Learning Factories (CLF), ser. Procedia Manu-
facturing, vol. 31, Jan. 2019, pp. 206–212. DOI: 10.1016/j.promfg.2019.03.033.

• M. Hajós and D. Horváth, ‘Robotos pakolási feladat megoldása környezetérzékelés
seǵıtségével’, in Nemzetközi Gépészeti Konferencia (OGÉT), Apr. 2020, pp. 305–308.
[Online]. Available: https://ojs.emt.ro/oget/article/view/156.

7

http://doi.org/10.1109/TRO.2022.3207619
http://doi.org/10.1016/j.ifacol.2023.10.121
http://doi.org/10.1109/ACCESS.2024.3427012
http://doi.org/10.1016/j.promfg.2018.04.001
http://doi.org/10.1016/j.promfg.2019.03.033
https://ojs.emt.ro/oget/article/view/156

• G. Erdős, D. Horváth, and G. Horváth, ‘Visual servo guided cyber-physical robotic
assembly cell’, in the 17th IFAC Symposium on Information Control Problems in
Manufacturing (INCOM), ser. IFAC-PapersOnLine, vol. 54, Jan. 2021, pp. 595–600.
DOI: 10.1016/j.ifacol.2021.08.068.

• G. Erdős, K. Abai, R. Beregi, et al., “Enabling Technologies for Autonomous Robotic
Systems in Manufacturing,” Transactions of Nanjing University of Aeronautics and
Astronautics, vol. 41, no. 4, pp. 403–431, Aug. 2024, ISSN: 1005-1120. DOI:
10.16356/j.1005-1120.2024.04.001.

1.4 Outline

The thesis contains six chapters:

• Chapter 1: Introduction. We briefly present the context of adaptive robotics, the
open challenges of transferability, and universality. Furthermore, list our contribu-
tions and outline the structure of this thesis.

• Chapter 2: Theoretical background. The essential background knowledge of the
following chapters is outlined, including machine learning, computer vision, transfer
learning, reinforcement learning, and curriculum learning. The literature review is
detailed at the beginning of the specific chapters.

• Chapter 3: Sim2real knowledge transfer for object detection. Our domain-
randomization-based sim2real knowledge transfer method for object detection (S2R-
ObjDet) is presented with the literature review, our generalised confusion matrix
(GCM), our industrial dataset (InO-10-190), our test results, and a thorough ablation
study.

• Chapter 4: Sim2real grasp pose estimation. Our vision-based, multi-object
grasp pose estimation models (MOGPE) are presented with the augmentation of our
S2R-ObjDet method with pose estimation (S2R-PosEst), alongside the literature
review and our experimental results.

• Chapter 5: Highlight experience replay. In this chapter, our curriculum learn-
ing methods (HiER, E2H-ISE, and HiER+) are presented along with the literature
review and our experimental results.

• Chapter 6: Conclusion. Finally, we conclude our findings and give an outline for
possible future research.

8

http://doi.org/10.1016/j.ifacol.2021.08.068
http://doi.org/10.16356/j.1005-1120.2024.04.001

Chapter 2
Theoretical background

Contents
2.1 Computer vision . 11

2.1.1 Problem formulation . 11

2.1.2 Convolutional neural networks 13

2.1.3 Vision transformers . 15

2.1.4 Image classification . 16

2.1.5 Object detection and pose estimation 18

2.2 Transfer learning . 22

2.2.1 Definitions and notations . 22

2.2.2 Sim2real object detection . 23

2.3 Reinforcement learning . 24

2.3.1 Markov decision process . 25

2.3.2 Multi-goal tasks . 25

2.3.3 Reward functions . 26

2.3.4 Demonstrations . 28

2.3.5 Categorization of RL algorithms 28

2.3.6 Tabular reinforcement learning 30

2.3.7 Reinforcement learning in robotics 30

2.3.8 Evaluation of RL algorithms . 33

9

2.4 Curriculum learning . 34

2.4.1 Easy2hard curriculum learning 35

2.4.2 Generalised curriculum learning 36

2.4.3 CL in supervised learning . 37

2.4.4 CL in reinforcement learning . 37

10

In this chapter, the essential theoretical background is presented. For brevity, the intro-
duction of artificial intelligence, machine learning, and deep learning with neural networks
are placed in Appendix A. Furthermore, the main domains of this thesis are presented
as follows: computer vision in Section 2.1, transfer learning in Section 2.2, reinforcement
learning in Section 2.3, and curriculum learning in Section 2.4.

2.1 Computer vision

Computer vision (CV) is a field of AI which aims to extract meaningful information from
visual data such as images or videos. It advanced rapidly in the past 10 years with the
deep learning revolution and the improvement of graphical process units (GPUs). Vision is
paramount when it comes to perception. With CV algorithms, we can recognise objects,
track movements, analyse scenes, and aid the decision-making processes.

As large language models (LLMs) overwhelm scientific discourse today, it is important
to emphasise the relevance of vision-based models in the domain of robotics and generally in
AI. First and foremost, vision has a profound connection to the real world around us while
language is essentially human-generated data inheriting the biases of the generator and the
limitations of the language. Consider the difference between explaining and showing how
to sit down, or what an elephant looks like. Additionally, for human perception, vision is a
high-bandwidth input with around 20 MB/s compared to language with around 12 bytes/s.
An average 4-year-old has seen 50 times more data than the state-of-the-art LLMs [13].
Nevertheless, the importance of LLMs should not be underestimated either. They are
integral to robotics research, having already driven numerous breakthroughs, with several
more anticipated in the future.

In this section, the problem formulation of CV and learning-based methods are pre-
sented. For a more thorough review, we refer the readers to [103], [104].

2.1.1 Problem formulation

Computer vision problems typically fall within the domain of supervised learning, where
the goal is to determine the function f ∗ that maps the input to the output. Thus, the
training dataset contains labelled input–output pairs, where the input is visual data – an
image or images – and the output depends on the CV task. The labelled output is also
referred to as the ground truth (GT).

A typical formulation of the input is: x ∈ Rw×h×cch , where w, h ∈ N are the width
and height of the image in pixels, and cch ∈ N is the number of channels. In the case of

11

grayscale images or depth data, cch = 1, for RGB images, cch = 3, and for RGB-D images,
cch = 4.

The output of the model depends on the specific problem. In the case of image clas-
sification, the output vector contains the probabilities that the input belongs to specific
classes, y ∈ [0, 1]C , where C is the number of classes. For traditional object detection,
y = {(bi, cclassi , pconi) | i = 1, 2, . . . , N}, where bi = [xi, yi, wi, hi] represents the 2D axis-
aligned bounding box (AABB)1 of the ith detection, where xi, yi ∈ [0, 1] are the normalised
coordinates of the centre point, while wi, hi ∈ [0, 1] are the normalised width and height of
the ith detection. Furthermore, cclassi ∈ N is the class label2 of the ith detection, pconi ∈ [0, 1]
is the confidence score, and N ∈ N is the number of detected objects. In the case of seman-
tic segmentation, the output is the pixel-wise classification of the image, y ∈ Rw×h×C . In
this case, each pixel is associated with an output vector – with length C – representing the
probabilities of that pixel belonging to the respective classes. Instance segmentation lies
between object detection and semantic segmentation. Here, each individual object instance
is segmented separately, even if multiple objects belong to the same class. It identifies both
the class and the individual instance of each object. The comparison of the different CV
tasks is depicted in Fig. 2.1.

Classification
Classification +

Localization Object Detection
Instance

Segmentation

CAT CAT CAT, DOG, DUCK CAT, DOG, DUCK

Single Object Multiple Objects

Figure 2.1: Comparison of classification, object detection, and instance segmentation
from [105].

Since the input data is an image, it possesses a substantially high dimensionality. Con-
sider a 3-channel 256×256 RGB image, the dimension of input x is 256×256×3 = 196608.

1Alternative formulations are outlined in Section 2.1.5.
2Typically with one-hot encoding.

12

Thus, applying traditional feedforward multilayer perception (MLPs) with fully connected
layers (see in Appendix A.3) is not feasible due to the memory requirements and training
efficiency.

2.1.2 Convolutional neural networks

Convolutional neural networks (CNNs) are special neural networks (NN) that were first
introduced by Lecun et al. [106] in 1989 but they gained widespread popularity only in
2012 with the success of AlexNet [33] at the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [107]. CNNs employ a mathematical operation known as convolution
to extract features from the input data and are especially effective in tasks involving vision,
audio, or time series data. A CNN can be either single or multi-dimensional, depending on
the dimensionality of the convolution. The mathematical formulation for 2D convolution
is provided in Eq. (2.1).

S(i, j) = (K ∗ I)(i, j) =
∑
m

∑
n

I(i−m, j − n)K(m,n), (2.1)

where S represents the output image, I denotes the input image, and K is the convolution
kernel (or filter). The indices i and j correspond to the global pixel positions in the input
image, while m and n represent the local offset indices for the convolution operation.

Key characteristics of CNNs

Following [108], CNNs have three key ideas:

• Sparse connectivity. Compared to traditional fully connected MLPs – where all
neurons of a layer are connected to all neurons of the previous layer – in convolutional
layers, an output neuron is connected only to a small subset of the input. Sparse
connectivity means fewer parameters and thus reduced memory usage, and statistical
efficiency.

• Parameter sharing. The output is not only connected to a small subset of the
input but the weights of these connections are shared across each output neuron,
meaning that the same set of weights is reused across different input regions. In
other words, the output is computed by sliding a (learnable) kernel over the input.
While this does not impact the runtime of forward propagation, it does help reduce
the memory required.

13

• Equivariant representations. CNNs are equivariant to translation. It is an essen-
tial property which enables the model to find similar patterns in different parts of the
image. In simple terms, this means that when an object or feature shifts in the input,
it shifts in the output in the same manner. Mathematically, f(x) is equivariant to
a function g if f(g(x)) = g(f(x)). In our case, g is any function that translates the
input.

Building blocks of CNNs

CNNs consist of three distinct operations:

• Convolutional layer. The convolution layer is the core part of the structure – hence
the name. A (learnable) kernel is slid over the input executing the mathematical
convolution operation – described in Eq. 2.1 – in order to extract the relevant features
of the image.

• Activation function. After the convolution operation, a non-linear activation func-
tion is applied to the output neurons of the convolutional layer. This step introduces
non-linearity, allowing the network to learn more complex patterns than simple linear
relationships. For more detail, we refer the reader to Appendix A.3.

• Pooling layer. To reduce the spatial dimensions of the output image – also referred
to as the feature map – the technique of pooling is utilised. In this operation, the
pixels (neurons) of the feature map are replaced with summary statistics [108] – e.g.,
max pooling [109] replaces the target value with the maximum value of its rectangular
neighbourhood. Besides dimensionality reduction, pooling makes the model invariant
for small translations which is beneficial if the presence of the feature does not need
to be (pixel-wise) precise. Boureau et al. [110] examined different types of pooling in
various situations. It is important to note that in some cases, not every convolutional
layer is followed by a pooling layer – depicted in Fig. 2.2.

In practice, several convolutions are performed in parallel creating numerous feature
maps capturing separate relevant aspects of the input image, such as edges, shapes, or
texture. The convolutional layers are illustrated in Fig. 2.2.

A Typical CNN architecture for image classification

In the case of classification, CNNs are typically divided into two consecutive parts – de-
picted in Fig. 2.2 – as follows:

14

• Feature Extractor (body). The feature extractor consists of several consecutive
convolutional – in each layer applying numerous kernels – and pooling layers. As data
passes through the layers, the network learns more abstract and high-level features.
By the end, the input image is transformed into a compact feature vector v ∈ Rnv

containing the relevant information of the image, where nv ∈ N is the length of the
feature vector. Mathematically, fbody : Rw×h×cch → Rnv .

• Classifier (head). After feature extraction, the feature vector is passed to a fully
connected MLP – known as the head – which maps the feature vector to the desired
output – e.g., class probabilities. Mathematically, fhead : Rnv → RC .

The feature extractor is a component of most CNN models, regardless of the specific
task. Its primary role is to extract relevant information from an image, which is the
main purpose of computer vision itself. However, in tasks such as object detection or
segmentation, the network’s head differs from the one described above.

Figure 2.2: Architecture of VGG16 [111]: The feature extractor is composed of successive
convolutional layers (with ReLU activations) and max pooling layers, while the classifica-
tion head comprises fully connected layers with ReLU activations. The image has been
adapted from [112].

2.1.3 Vision transformers

Vision transformers (ViTs) [113], [114] belong to another line of research, offering an
alternative to CNNs. ViT is an adaptation of the novel transformer architecture [39].

15

Standard transformers were introduced for natural language processing where they process
one-dimensional time series. By leveraging self-attention mechanisms, transformers effec-
tively capture relationships between different parts of the input, regardless of their spatial
locations, striking a balance between short-term and long-term dependencies. To handle
multi-dimensional image data, ViT models divide images into tokens – small patches of
n × n pixels – and process them as sequential data. While ViTs have shown promising
results in computer vision, they typically require extensive pre-training on large datasets
due to their lower inductive bias compared to CNNs. Since this thesis focuses on CNNs,
for a more thorough review of ViTs, we refer the reader to [114].

2.1.4 Image classification

In this section, we provide an overview of image classification, followed by object detection
and pose estimation in Section 2.1.5. Since image segmentation is not relevant to this
work, it is not discussed here.

As introduced in Section 2.1.1, the input of the model is the image itself, x ∈ Rw×h×cch ,
while the output is the probabilities that the input belongs to specific classes, y ∈ [0, 1]C .
Thus, fclass : Rw×h×cch → [0, 1]C .

The output layer contains C neurons, one for each class. To convert logits3 to proba-
bilities, typically the softmax activation function is applied σ : RC → [0, 1]C , presented in
Eq. (2.2). Additionally, during training, the cross-entropy loss function is applied, defined
in Eq. (2.3).

σ(z)i =
ezi∑C
c=1 e

zc
, (2.2)

where z ∈ RC is the logit vector.

lCE = −
C∑
c=1

yi,c · log(pi,c), (2.3)

where yi,c indicates if the input i is in class c, while pi,c is the predicted probability that
the input i is in the class c.

There are numerous metrics to evaluate classification models. The confusion matrix
D ∈ NC×C helps to navigate among these metrics, depicted in Fig. 2.3. D is a C × C

3The raw, unnormalised output values of the final layer of the NN before any activation function is
applied, typically before applying a softmax function.

16

matrix, where Di,j indicates the number of cases when an image of class i was classified as
class j. Following that, the most common classification metrics are:

• Accuracy. The portion of correctly classified images, presented in Eq. (2.4). It is
equivalent to the number of samples in the diagonal of the confusion matrix (i = j)
divided by all the samples.

Accuracy =

∑
iDi,i∑
i,j Di,j

(2.4)

• Top-k accuracy. Top-k accuracy evaluates the model’s performance by considering
its top k predictions, rather than just checking if the top prediction is correct. A pre-
diction is deemed correct if the true class appears within the top k predicted classes.
This approach offers a more flexible measure of performance, particularly when dis-
tinguishing between classes is challenging4. Typically, k is set to one (traditional
accuracy) or five.

• Precision (positive predictive value). The portion of correctly labelled examples
among all the predictions of a class. Following the notation of the confusion matrix:

Precision(i) =
Di,i∑
j Dj,i

(2.5)

It is beneficial to use the precision metric as an evaluation when the high quality of
the prediction is more important than missing some samples, e.g., spam detection.

• Recall (sensitivity). The portion of correctly labelled examples of a given (ground
truth) class. Following the notation of the confusion matrix:

Recall(i) =
Di,i∑
j Di,j

(2.6)

It is advised to use the recall metric as evaluation when detecting all the samples of
a class is crucial, e.g., medical screening for diseases.

4E.g., in the ImageNet dataset, the ’Siberian Husky’ and the ’Alaskan Malamute’ are two different dog
breeds that share many main characteristics.

17

Prediction

Class 1

G
ro

un
d

Tr
ut

h

Class 2 Class 3
C

la
ss

 1
C

la
ss

 2
C

la
ss

 3

Accuracy

FormulaMetric

Recall()

Precision()

Example

Figure 2.3: Confusion matrix.

2.1.5 Object detection and pose estimation

As state-of-the-art CNNs exceed human performance in most classification benchmarks,
the research interest has shifted from classification towards more challenging tasks such as
object detection or pose estimation.

The goal of object detection is to detect all objects of given classes in an image. Object
detection is both a regression and a classification problem since both the locations of the
objects and the classes of the objects need to be computed. Moreover, as the number of
objects in an image can vary, the number of outputs is not predetermined – in contrast to
classification tasks. It is important to note that object detection does not attempt to assign
individual pixels to the given objects as it is done in semantic segmentation. Instead, it
uses bounding boxes (BBs) to define the boundaries of the objects.

The objects are located on an image with BBs which are n-dimensional hyperrectan-
gles (e.g., rectangles in 2D) encompassing the objects. If the axes of the hyperrectangles
are aligned with the axes of the image’s coordinate system, then the bounding boxes are
axis-aligned, as depicted on the left side of Fig. 2.4. In classical object detection, the image
is 2D and the BBs are axis-aligned (AABB). Mathematically, the output of a traditional
object detection model is y = {(bi, cclassi , pconi) | i = 1, 2, . . . , N}, where bi = [xi, yi, wi, hi]
represents the 2D AABB, cclassi ∈ N is the class label, and pconi is the confidence score5

of the ith detection, while N ∈ N is the number of detected objects. Alternatively, a
2D AABB can also be formulated as b2D = [xmin, ymin, xmax, ymax], where the items cor-
respond to the minimum and maximum values of the rectangle. Consequently, in 3D,
b3D = [xmin, ymin, zmin, xmax, ymax, zmax].

5Note that for the ground truth, there is no pconi ∈ [0, 1] confidence score.

18

Axis-aligned bounding box (AABB) Oriented bounding box (OBB)

Figure 2.4: The comparison of axis-aligned bounding boxes and oriented bounding boxes.

For pose estimation, the classical axis-aligned bounding boxes (AABB) are not sufficient
as they lack orientation information. Thus, for pose estimation, oriented bounding boxes
(OBB) need to be used. In the 2D case, it means that another parameter ϕ ∈ R, describing
the rotation, needs to be added to the object description. While OBBs are more complex
and thus harder to train, they offer a more accurate representation of the object compared
to AABBs. The comparison of AABB and OBB is depicted on Fig. 2.4.

Training and evaluation metrics

For training and evaluating, it is important to define what counts as correct detection,
which is not as straightforward as in the case of classification. The object detection models
output a set of BBs. First and foremost, the proposed bounding boxes are filtered based
on their confidence score pconi . To keep specific predictions, their pconi must be greater or
equal than the confidence threshold τcon ∈ [0, 1]. In the second step, the predicted BBs
and the ground truth BBs need to be compared. Typically, the intersection over union
(IoU) metric, also known as the Jaccard index, defined in Eq. (2.7), is applied. If the area
of overlap divided by the area of union exceeds a certain threshold τiou ∈ [0, 1], then the
prediction is considered to be correct. A typical threshold value is τiou = 0.5. It is important
to note that there are many objects in an image, and the IoU of each prediction–GT pair
need to be evaluated.

19

JIoU(P ,GT) =
|P ∩ GT |
|P ∪ GT |

, (2.7)

where P is the predicted BB and GT is the ground truth BB.

In terms of model training, the IoU metric can be applied as a loss function as well,
LIoU = 1− JIoU. Nevertheless, IoU has a weakness. If |P ∩ GT | = 0, then JIoU(P ,GT) = 0.
In other words, if the prediction and the ground-truth BB do not overlap, then their IoU is
zero. To overcome this, an alternative version of the standard IoU measure, the generalised
intersection over union (GIoU) [115] is introduced, formulated as in Eq. (2.8). GIoU is a
normalised measure minimising the empty area between P and GT .

JGIoU = JIoU −
|SP,GT \ (P ∪ GT)|

|SP,GT |
, (2.8)

where SP,GT is the closest convex shape (in this case rectangle) enclosing both P and GT .

For evaluation, the precision-recall curve is essential. As presented above, the predicted
BBs are filtered out based on the τcon threshold. Thus, changing τcon affects how many
BBs are kept. If τcon is set too high, only a few BBs will pass the threshold and be subject
to the IoU-based GT comparison, resulting in high precision and low recall. On the other
hand, setting τcon to a low value will result in many BBs, resulting in a low precision but
a high recall. This is the precision-recall trade-off.

In the precision-recall curve, data points of different τcon threshold values (from 0 to
1) are presented forming a curve. For one class, the average precision (AP) score ∈ [0, 1]
represents the area under the curve. The mean average precision (mAP) score ∈ [0, 1]
represents the mean AP across the different classes. Another metric is the F1 score ∈ [0, 1]
which is the harmonic mean of the precision and the recall. An example of the precision-
recall curve with the maximum F1 score is depicted in Fig. 2.5.

State-of-the-art object detection models

Recent deep CNN architectures can be categorised into two groups: two-stage detectors
and one-stage detectors. Two-stage detectors have a proposal detection stage where a set
of bounding box candidates is generated, and a verification stage where these bounding
boxes are separately evaluated whether they contain an object of a specific class. Ex-
amples of these networks are R-CNN [117], SPPNet [118], Fast R-CNN [119], and Faster
R-CNN [120].

20

Figure 2.5: An example of the precision-recall curve from [116]. The colour bar indicates
the τcon threshold values.

In the case of one-stage detectors, on the other hand, a single neural network is applied
to the full image that predicts the bounding boxes straight away. The slow detection
time, which is the biggest disadvantage of the two-stage detectors, can be overcome with
the one-stage approach. Detection time is crucial for many applications, especially but not
exclusively in the field of robotics or self-driving cars. Redmon et al. proposed the first one-
stage detector YOLO in 2015 [121], being the first real-time object detector. Subsequent
updates introduced its second [122] and third versions [123]. Single Shot MultiBox Detector
(SSD) [124] and RetinaNet [125] are two other popular one-stage detectors.

Bochkovskiy et al. [34] created YOLOv4 aiming to improve the accuracy of the model
while still keeping an optimal accuracy–speed trade-off. With the CSPDarknet-53 [34]
backbone, 65.7% mAP50 could be achieved for the MS COCO dataset [71] and around
65 FPS speed on a Tesla V100. Since then, further YOLO versions were introduced
to gradually improve the performance: YOLOv5 [126], YOLOv6 [127], YOLOv7 [128],
YOLOv8 [129], and YOLOv9 [130]. YOLOv5-X r7.0 [126] achieves 68.9%, while
YOLOv9-E [130] yields 72.8% mAP50 score on the MS COCO dataset. In comparison,
on the same dataset, SSD with VGG-16 [111] backbone performed 48.5% mAP50 and Reti-
naNet with ResNet-101 [131] backbone achieved 57.5% mAP50. For further comparison,
we refer the reader to [132].

21

2.2 Transfer learning

One of the biggest challenges of robotics is how to transfer knowledge between tasks [65],
robots [66], or domains [35], [1], [4], [67] – contrary to learn everything from scratch.
The aforementioned problems belong to the field of transfer learning (TL). In this work,
we focus on transferring knowledge between different tasks and domains. Illustrating the
importance of TL, consider an example of two people attempting to learn to play the piano.
One is a guitarist with extensive music knowledge, while the other has no background in
music. Expectedly, the former student will master the piano faster than the one without
any knowledge to transfer [68].

However, transfer learning is not only about optimising how we use learnt knowledge.
Frequently, it is the only way to handle real-life problems. The traditional assumption in
ML is that the training data and the test data come from the same distribution. Nev-
ertheless, in real-world situations, this is often infeasible. For instance, the training data
might be unreasonably expensive, difficult to obtain, or simply not available. Thus, we
need models that can learn from data sampled from an accessible domain and then applied
in the target domain [69].

2.2.1 Definitions and notations

Following [68], [69], [133], a domain D is defined with a feature space X of all possible fea-
ture vectors and a marginal probability distribution P (X), where X = [x1, x2, x3, ..., xn] ∈
X , while a task T is defined with a label space Y and a predictive (or decision) function f(·)
which is in the centre of our attention as it is the function that is expected to be learned
from the sample data – e.g., in visual classification the input is the image, the output is the
class label, while the predictive function maps the input to the output. From a probabilis-
tic point of view, f(·) can be seen as a conditional probability P (Y | X). Thus, a domain
D = {X , P (X)} and a task T = {Y , P (Y | X)}. Given a specific source domain and task
pair {DS, TS} and a specific target domain and task pair {DT , TT}, transfer learning can
be defined as the process of increasing the performance of the target predictive function
fT (·) with the help of knowledge gained from {DS, TS}, where DS ̸= DT or TS ̸= TT .

An example of TS ̸= TT is when an image classifier, trained on a large public dataset, is
reused and altered to perform object detection on the same or a similar domain (DS = DT).
In this case, the label spaces are different, and consequently, the conditional probability
distributions of the inputs and the outputs P (Y | X) are disparate as well. Nevertheless,
the marginal distributions of the inputs P (X) are equivalent or similar.

22

The other case of transfer learning is when TS = TT , but DS ̸= DT , i.e., the tasks are
the same, yet, the domains are different. In order to improve fT (·), our aim is to extract
the relevant (not domain-specific) knowledge from {DS, TS}. Thus, the model will perform
well on the DT target domain.

In the case of DS ̸= DT , it means that XS ̸= XT and/or P (XS) ̸= P (XT). When XS ̸=
XT , it is referred to as heterogeneous transfer learning, while XS = XT is called homogeneous
transfer learning. Heterogeneous TL requires feature space adaptation [134] which makes it
more complicated. On the other hand, if the marginal probability distributions are different
P (XS) ̸= P (XT), then possibly the conditional probability distributions are disparate as
well P (YS | XS) ̸= P (YT | XT). These phenomena are referred to as the frequency feature
bias or covariate shift [135], and the context feature bias [134], respectively.

If DS and DT or TS and TT are not related enough, the knowledge transfer might not
improve the performance of fT (·). In the worst-case scenario, negative transfer can occur
meaning that the model’s performance might even decrease [136].

2.2.2 Sim2real object detection

Sim2real object detection is a special case of transfer learning. Instead of real images
obtained from the target domain, the model is trained on synthetic data, thus DS ̸= DT .
On the other hand, it performs the same task, namely object detection (on the same classes
of objects), therefore TS = TT . Nevertheless, the model trained on synthetic data, ceteris
paribus, does not work on real images as the domains are disparate. This phenomenon is
referred to as the reality gap, and the main goal of sim2real transfer is to bridge this gap.

Domain adaptation (DA) is an approach to diminish the reality gap. DA attempts to
transform one domain into the other domain or transform both domains into a common
domain. In the case of sim2real object detection, it usually consists of generating photo-
realistic images for the training dataset. The more the generated images resemble the real
ones, the more the difference between domains is reduced, and thus, the model’s perfor-
mance on the real images is improved. Synthetic data can be generated with advanced
render softwares [137] or based on data-driven approaches, such as variational autoencoders
(VAE) [138] or generative adversarial networks (GAN) [139]. In addition, novel methods
based on neural radiance fields (NeRF) [44] or Gaussian splatting [45] enable us to generate
high-quality synthetic images.

Domain randomization (DR), on the other hand, introduces variability by adding ar-
tificial noise to the synthetic training images. The idea is that the added noise makes the

23

model robust to different domains, as it does not overfit on the domain-specific characteris-
tics, but learns the domain-independent underlying data representation. Another possible
interpretation is to consider the different domains as perturbed versions of one common
domain. The general idea of introducing variance to simulation was first presented by
Jacobi [140].

Other important concepts of transfer learning are the zero-shot and the one-shot trans-
fers. Zero-shot transfer means that there are not any samples accessible from {DT , TT},
while one-shot transfer means that only one or a few data are available from {DT , TT}.

2.3 Reinforcement learning

Alongside supervised and unsupervised learning, reinforcement learning is one of the main
branches of machine learning. It is simultaneously a class of problems, a class of solutions,
and the name of the field itself [73]. In RL, an agent attempts to learn the optimal policy
for a task through trial-and-error interactions with an environment.

It is beneficial to use RL algorithms, compared to supervised learning (or rule-based
systems), when it is easy to define the goal but hard to map specific situations (inputs)
to the best actions. E.g., it is easy to define winning or drawing position in a chess game
but it is incredibly hard to tell in a specific situation, what the best move is. For these
problems, it is often advantageous to let an RL agent explore its environment and come
up with a solution to the given problem with trial-and-error.

Compared to other fields of machine learning, the main challenges are the delayed
reward, the dilemma of exploration and exploitation, and that the training data is not
independent and identically distributed (i.i.d.).

Control theory is closely related to RL, as both aim to develop agents (controllers) that
make decisions to optimize performance over time. Traditionally, control theory follows
a model-driven approach while RL follows a data-driven approach. Furthermore, while
traditional control theory focuses more on minimizing immediate deviations from a de-
sired state, RL is oriented toward maximizing long-term rewards, making it versatile for
applications where outcomes unfold over time. Nevertheless, the boundary of the fields
has become less distinct in recent years. In Appendix B, a comparison of control theory
and RL is presented with the most relevant differences in terms, notations, and formu-
lations. Furthermore, in Appendix C, safe reinforcement is presented where – in several
occasions – the methods combine control theory and RL. For readers less familiar with RL,
we recommend reading Appendix B and Appendix C at the end of Section 2.3.

24

2.3.1 Markov decision process

Following [73], RL can be formalised with a Markov decision process represented by a tuple
(S,A, r, γ, p, µ0), where S is the state space, A is the action space, r : S × A → R is
the reward function, γ ∈ [0, 1] is the discount factor, p(st+1, rt | st, at) is the transition
probability with s ∈ S and a ∈ A, and µ0 is the initial state distribution.

Every episode6 starts by sampling from the initial state distribution µ0. In every
timestep t ∈ N, the agent performs an action according to its policy π(a|s) and receives
a reward, a new state7, and a done flag8 d ∈ {0, 1} from the environment. The agent-
environment interaction in MDP is depicted in Fig. 2.6.

Figure 2.6: The agent–environment interaction in a Markov decision process [73]. The
done flag is not depicted.

Learning the optimal policy is formulated as maximising the expected discounted sum
of future rewards or expected return Es0 [G

disc
0 | s0] and Gdisc

t =
∑T

i=t γ
i−tri, where T ∈ N

is the time horizon. Value-based off-policy algorithms learn the optimal policy by learning
the optimal Q (action-state value) function: Qπ(st, at) = E[Gdisc

t | st, at].

2.3.2 Multi-goal tasks

In multi-goal tasks, there are multiple reward functions rg parametrised by the goal g ∈ G.
A goal is described with a set of states Sg ⊂ S, and it is achieved when the agent is in one
of its goal states st ∈ Sg [93]. Thus, according to [141] and [93], the policy is conditioned
also on the goal π(a|s, g). In our implementation, we simply insert goal g into state s

6The training process is oftentimes divided into separate attempts to solve the task. One episode is
an attempt. After the agent succeeds, fails, or times out, the environment is reset, and the agent can try
again.

7For simplicity, the environment is considered to be fully observable.
8Indicating the end of the episode.

25

and consequently, when the initial state is sampled from µ0, the goal is sampled as well.
Henceforth, we refer to µ0 as the initial state-goal distribution.

2.3.3 Reward functions

The agent’s goal is to maximise the total amount of reward it receives. Even though this
formulation is generally flexible and widely applicable (transferability), the universality
changes considerably among different reward functions.

There are two main categories for reward functions, sparse and dense reward. Sparse
reward means that the reward occurs infrequently and typically after the task is completed,
e.g., giving some reward for successful termination and zero otherwise. On the other hand,
in the dense reward scenario, the informative feedback is frequent, e.g., distance from the
target at every timestep. Sparse reward functions are beneficial as they are universal, while
dense reward functions can significantly facilitate exploration by sacrificing universality.

Introducing prior knowledge in the form of reward shaping could facilitate the explo-
ration by guiding the agent toward the desired solution. However, 1) constructing a sophis-
ticated reward function requires expert knowledge, 2) the reward function is task-specific,
and 3) the agent might learn undesired behaviours. Another source of prior knowledge
could be in the form of expert demonstrations. Nonetheless, collecting demonstrations is
oftentimes expensive (regarding time and resources) or even infeasible. Furthermore, it
constrains transferability as demonstrations are task-specific.

Even though the classification of reward functions in the literature is not well-defined,
the following list shows common reward functions.

• Positive sparse reward. The agent only gets any reward in case of completion
of the tasks, described with Eq. (2.9). The main advantage of this formulation is
its universality. Nevertheless, the reward function, without discounting, does not
incentivise the agent to solve the task as fast as possible.

r(s, ·) =

{
1, if s ∈ Sg

0, otherwise
(2.9)

• Negative sparse reward. Formulated in Eq. (2.10), the negative sparse reward
function facilitates finding the shortest (optimal) solution even without discounting,
while being universal.

r(s, ·) =

{
0, if s ∈ Sg

−1, otherwise
(2.10)

26

• Sparse adversarial reward. In adversarial games (e.g., chess), the agent receives
the reward only when the game ends, based on the result. It might be formulated as
in Eq. (2.11).

r(s, ·) =

+1, if s ∈ Sw

1
2
, if s ∈ Sd

0, otherwise,

(2.11)

where Sw ⊂ S and Sd ⊂ S are states where the result is a win or a draw. By
definition, Sw ∩ Sd = ∅.

• Distance-from-start dense reward. In these problems, the agent needs to move
away from its starting position. Typical scenarios are when the robot needs to run,
jump, or swim. On many occasions, the control effort is subtracted from the reward
to incentives smaller actions. A distance-from-start dense reward is formulated in
Eq. (2.12).

r(s, ·) = b1 · d(s, s0)− b2 ·
∑
a∈A

a2, (2.12)

where d : S × S → R is a distance function and b1, b2 ∈ R are constants.

• Distance-to-goal dense reward. Similar to the distance-from-start reward func-
tion with the exception of having a negative reward proportional to the distance to
the goal. It must be constructed carefully, otherwise, it is easy to get stuck in local
minima. An example of the distance-to-goal dense reward functions is presented in
Eq. (2.13).

r(s, ·) = b · d(s, sg), (2.13)

where b ∈ R is a constant.

In the list above we did not include reward functions with failure (terminal non-goal)
states9. Nevertheless, with a simple modification these reward functions can be transformed
to include failure states as well – e.g., Eq. (2.10) can be formulated as Eq. (2.14).

r(s, ·) =

0, if s ∈ Sg

−P, if s ∈ Sf

−1, otherwise,

(2.14)

where Sf is the set of failure states and P ∈ R+ is the penalty term for termination. P
could be a function of the failure states as well. Furthermore, by definition, Sg ∩ Sf = ∅.

9With the exception of the sparse adversarial reward.

27

2.3.4 Demonstrations

Another important aspect of RL is whether the agent has access to any form of demon-
stration. A demonstration is an example of the desired (optimal or suboptimal) behaviour
provided by an external source which can significantly facilitate the exploration [142].
It can be especially beneficial in sparse reward scenarios. Oftentimes, an expert human
provides these examples in which case it can be referred to as human demonstrations. Nev-
ertheless, collecting expert demonstrations is expensive and time-consuming, or even not
feasible. On the other hand, automatically generating demonstrations before the training
presumes that the task can be solved already at least for a set of goals, raising the question
of whether RL training is necessary.

2.3.5 Categorization of RL algorithms

Model-based vs model-free

Model-based RL algorithms attempt to build a model of the environment p(st+1, rt|st, at).
The agent uses the model of the environment to plan its actions by simulating future
states and rewards. This approach is beneficial if p(st+1, rt|st, at) is known or can be ef-
ficiently approximated. Examples for Model-based RL algorithms are Dynamic program-
ming (DP) [143], Dyna-Q [144], and AlphaGo [78].

Model-free RL agents do not build a model of the environment but simply learn the
policy or value function directly through trial-and-error. This approach is beneficial when
the dynamics of the environment are not known and would be difficult to learn, such as
in robotics. Examples of model-free RL algorithms are Q-learning [145], SARSA [146],
Deep Q-learning (DQN) [79], or policy gradient methods such as REINFORCE [147],
A2C/A3C [148], PPO [149], DDPG [80], [81], TD3 [82], and SAC [83].

Value-based vs policy-based

Value-based RL agents focus on estimating the v(s) state value function, Eq. (2.15) or
the q(s, a) state-action value function, Eq. (2.16), which is then utilised to derive the
optimal policy. In most cases, the policy simply chooses greedily the best action with
1 − ϵ probability or a random action with ϵ ∈ [0, 1] probability (ϵ-greedy [73]). The
random actions are beneficial for exploration preventing the agent from getting stuck in
local minima. Note that ϵ = 0 results in a pure greedy policy. An alternative to the greedy
or ϵ-greedy policies is the upper confidence bound (UCB) algorithm [150]. Optimistic

28

initialization of the value function [151] and the technique of exploring starts [73] are two
further methods to aid exploration. Even though value-based methods can be more stable
and more sample-efficient, their application is limited to discrete (or discretized) action
spaces. Examples of value-based RL methods are Q-learning, SARSA, and DQN.

vπ(s) = E [Gt | St = s] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s

]
(2.15)

qπ(s, a) = E [Gt | St = s, At = a] = Eπ

[
∞∑
k=0

γkRt+k+1 | St = s, At = a

]
(2.16)

Policy-based RL algorithms directly approximate the policy, which is typically a prob-
ability distribution over the available actions, by directly mapping the states to actions
without explicitly evaluating the value function. One of the main advantages of policy-
based RL methods is their capability to handle continuous action spaces. Nevertheless,
they can suffer from high variance and slow convergence, and in general, they are less
sample-efficient than value-based methods. An example of a pure policy-based method is
REINFORCE.

There exists a third type of RL algorithms, named actor-critic models, combining the
advantages of value-based and policy-based RL agents. Actor-critic methods learn both the
policy and the value function. The actor uses feedback from the critic (bootstrapping) to
adjust its policy parameters. Nevertheless, actor-critic methods fall closer to policy-based
methods as the policy maps the states to actions. Actor-critic models, such as A2C/A3C,
PPO, DDPG, TD3, SAC are especially relevant in the field of robotics.

On-policy vs off-policy

In the case of on-policy RL agents, the behaviour policy πB – which is responsible for
collecting the training data – and the target policy πT – which is optimised by the agent –
are the same. Mathematically, πB = πT . Consequently, when the policy of the agent
is updated, the previously collected data cannot be utilised anymore causing low sample
efficiency. Examples of on-policy RL algorithms are SARSA, REINFORCE, and PPO.

In the case of off-policy RL algorithms, πB ̸= πT . Thus, off-policy RL is better for
sample efficiency as it can use data collected by previous policies or even external data
(demonstrations). Moreover, in this scenario, the training data is closer to i.i.d. Examples
of off-policy RL agents are Q-learning, DQN, DDPG, TD3, and SAC.

29

2.3.6 Tabular reinforcement learning

Tabular RL refers to the problems when the state and action spaces are discrete and typ-
ically small enough to be efficiently represented in tables. These problems are easier to
handle due to the limited number of states and actions. There are different approaches to
tackle this type of RL problem, such as dynamic programming (DP), Monte Carlo (MC),
and temporal difference (TD) methods. Nevertheless, all these approaches build on some
type of value function estimation utilising tables, representing the states or state-action
pairs. Since efficient discretization is often infeasible for continuous robotic problems, tab-
ular methods are less practical in such cases. Nonetheless, as the theory of tabular methods
forms the basis of continuous methods, a short summary is provided in Appendix D. For
a thorough description of tabular RL, we refer the reader to Part 1 of [73].

2.3.7 Reinforcement learning in robotics

Even though RL algorithms achieved superhuman performance in numerous domains, the
field of robotics poses significant challenges as the state and action spaces are continuous,
and the reward function is predominantly sparse. Furthermore, on many occasions, the
agent is devoid of access to any form of demonstration. In this section, the main challenges,
characteristics, and state-of-the-art solutions are presented.

Deep Q-learning (DQN) [79] offers a solution to the problem of continuous state spaces.
In DQN, instead of tables, the value function is approximated with a neural network, and
thus its input (the state) can be continuous. As updating the NN indirectly alters the
values nearby, it is beneficial to apply a target network which is a copy of the NN that is
updated less frequently.

Even though DQN offers a solution for continuous state spaces, handling continuous
action spaces remains an even more challenging problem. In this case, choosing the best
action in the Bellmann optimality equation, Eq. (D.2), is not feasible due to the continuous
action space.

The cross-entropy algorithm [152] is a policy-based and on-policy method that can han-
dle continuous state and action spaces. It is easy to implement and works at a satisfactory
level in the case of simple problems with frequent rewards. The policy is realised with a
neural network that attempts to compute the best action in a given state. The network is
trained on a subset of data collected by the policy. In the subset, the best episodes (with
the highest return) are selected.

The REINFORCE algorithm [147] is one of the fundamental methods of RL. It is
a policy-based and on-policy algorithm, sharing characteristics with the cross-entropy

30

method. In the cross-entropy method, there is a binary distinction between the data used
for training and not used. In contrast, the REINFORCE algorithm utilises all collected
data for training. However, the weights of the data are set based on their discounted total
reward10, presented in Eq. (2.17). Even though REINFORCE significantly outperforms
the cross-entropy method, it has limitations, namely, high gradient variance, challenging
exploration, and correlation between samples (data is not i.i.d.). For reducing the gradient
variance, different baselines can be subtracted from the scaler. Typical baselines are the
means or the estimated values of the states.

L = −
∑
k,t

Qk,t · log [π (ak,t | sk,t)] , (2.17)

where k ∈ N is the index of the episodes, t ∈ N is the timestep in that given episode, and
the Qk,t ∈ R scaler is the discounted total reward.

Actor-critic methods introduce bootstrapping to the REINFORCE algorithm. There
are two NNs, an actor and a critic. The former is responsible for the policy, while the latter
approximates the value of the states for bootstrapping. The architecture of a traditional
actor-critic model is presented in Fig. 2.7a. In the advantage actor-critic, or A2C algorithm,
the gradient is scaled with the advantage term, presented in Eq. (2.18). Thus, the Qk,t

scaler term in Eq. (2.17) is replaced with the A(st, at) scaler from Eq. (2.18). The advantage
represents how much more beneficial to take a specific action in a given state, compared
to the average/general action in that state. The asynchronous advantage actor-critic, or
A3C [148] method introduces parallelism in the training process where many A2C workers
are combined either at the data or at the gradient level.

A(st, at) = Qw(st, at)− Vv(st), (2.18)

where A(st, at) ∈ R is the advantage, Qw(st, at) ∈ R is the value of a given state-action
pair, and Vv(st) ∈ R is the value fo a given state.

One of the most challenging aspects of RL is that the training data is generated mostly
or fully by the trained policy itself (not i.i.d.) causing instability in the training. On-policy
RL algorithms, e.g., REINFORCE or A2C/A3C, can be trained, by definition, only on the
last batch of data11 which exacerbates the problem of training stability. When there is
a considerable update on the weights of the policy, the new policy might be significantly
worse than the previous one. As the training data for the next weight update comes from

10From another point of view, in the cross-entropy method, the weight of a data point can only be zero
or one, depending if it is included in the training or not.

11Typically a couple of episodes.

31

the new policy, it could cause a downward spiral. The aim is to move to the optimal
solution as fast as possible while maintaining stability and avoiding downward spirals.
Trust regions [149], [153], [154] offer a solution to the aforementioned problem. One of the
most widely used trust region methods is the proximal policy optimization (PPO) [149]
algorithm which utilises a clipped objective function, presented in Eq. (2.19) to ensure the
stability of the policy updates.

Lclip(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
, (2.19)

where rt(θ) =
πθ(at|st)

πθold
(at|st) is the probability ratio, Ât is the estimated advantage at time step

t, and ϵ is a hyperparameter that controls the clipping range.

Even though trust region methods could improve the stability of RL training, they
are still on-policy algorithms with the aforementioned drawbacks. Deep deterministic pol-
icy gradient or DDPG [80], [81] is an off-policy actor-critic model combining ideas of
Q-learning and policy-based methods. Up to this point, the algorithm of this section must
have stochastic or probabilistic policies. The main reason behind this is that the target
function needs to be smooth and continuously differentiable to allow for gradient updates.
In DDPG, the actor and critic are trained together as depicted in Fig. 2.7b. As the value
function Q(st, at) is the target for the actor, the policy can be deterministic. For train-
ing, the policy must be deterministic because sampling would disrupt the continuity of
the gradient. For collecting training data, DDPG adds noise to the action to encourage
exploration. Furthermore, to stabilise training, DDPG applies target networks for both
the actor and critic. As DDPG is off-policy, it utilises an experiment replay buffer Ber
where the transitions are stored. For training, the transitions are sampled from Ber. Con-
sequently, the data used for training is collected by different policies at different times of
the training, making the data closer to i.i.d. Additionally, DDPG being off-policy enables
the use of external data, e.g., human demonstrations. The main drawbacks of DDPG
are: 1) it is considerably sensitive to its hyperparameters, 2) balancing exploration and
exploitation is challenging due to the deterministic policy, and 3) the learnt Q function
dramatically overestimates the real Q-values, breaking the policy by exploiting the errors
in the Q function.

The twin delayed deep deterministic policy gradient (TD3) [82] and the soft actor-
critic (SAC) [83] are two separate lines of research12 to improve DDPG, sharing some
key similarities. TD3 introduces three tricks to address the overestimation of Q-values
which is a common failure of DDPG. Firstly, instead of one, two Q functions are learnt
for the Bellman error loss function. For the target, the smaller Q-value is selected (clipped

12Published around the same time.

32

Actor Critic

(a) Traditional actor-critic

Actor
Critic

(b) DDPG

Figure 2.7: Top. The architecture of the traditional actor-critic model. The actor and
the critic are trained separately. Bottom. The architecture of DDPG. The actor and
the critic are trained together. As the value function Q(st, at) is the target for the actor,
the policy can be deterministic. For training, the policy must be deterministic because
sampling would disrupt the continuity of the gradient.

double-Q learning). Secondly, the policy is updated less frequently than the Q function
(delayed policy updates). Thirdly, to avoid exploiting the Q function errors, noise is added
to the target action (target policy smoothing). On the other hand, while SAC also utilises
the clipped double-Q learning, it is equipped with an entropy-regularised stochastic policy.
An entropy term H (π (· | s)) is introduced to the loss function, making it maximise both
the entropy (exploration) and the expected return (exploitation). Due to its inherent
stochasticity, it also gains a similar advantage as the target policy smoothing in TD3.

2.3.8 Evaluation of RL algorithms

State-of-the-art deep reinforcement learning models are compared based on just a few ex-
periments, primarily due to constraints on training time. Therefore, simple point estimates
of aggregate performance such as mean and median scores across tasks are insufficient as
they do not capture the statistical uncertainty implied by the finite number of training
runs. In this section, we present the most relevant statistical evaluation methods utilised
in RL.

In general, confidence intervals (CIs) are beneficial to measure uncertainty. The boot-
strap CI method creates multiple datasets by resampling with replacement from a set of
data points (results of independent training runs). As the distribution of the means of

33

the resampled datasets approaches a normal distribution13, the CI can be calculated. Tra-
ditionally, bootstrap CI is performed on a single task [155]–[157]. Agarwal et al. [158]
proposes the method of stratified bootstrap CI which performs a bootstrap CI across mul-
tiple tasks using stratified sampling.

Another useful evaluation method is presenting the performance profiles. A tail dis-
tribution function is defined as F (τ) = P (X > τ), where τ ∈ R, and X is a real-valued
random variable14. The performance profiles are beneficial for comparing different al-
gorithms at a glance. In mathematical terms, X has stochastic dominance over Y if
P (X > τ) ≥ P (Y > τ), for all τ , and for some τ P (X > τ) > P (Y > τ), where X and
Y are random variables. Two main versions are the run-score distribution [158] and the
average-score distributions [159]. Examples of performance profiles are presented among
our experimental results in Fig. 5.4 and in Fig. 5.8.

Displaying the probability of improvement is another beneficial evaluation method.
It shows the probability of Algorithm X exceeding Algorithm Y in a set of tasks. It
is important to note that it only indicates the probability of improvement and not the
magnitude of the improvement.

Finally, standard aggregate performance metrics have shortcomings. The median has
high variability and it is unchanged even when half of the results are zero, while the
mean can be significantly influenced by some outliers. Thus, [158] proposes to use the
interquartile mean (IQM) and the optimality gap (OG) as alternatives to the median and
the mean. IQM removes the bottom and top 25% of the runs and calculates the mean
of the remaining 50% of the runs. OG is the amount that the algorithm fails to reach a
desirable target. It is important to note that in the OG metric if an algorithm surpasses
the desirable target, it does not affect its OG score.

2.4 Curriculum learning

Humans require a highly organised training process – introducing different concepts at
different times – to become fully functional adults. From kindergarten to university, we
progress through various stages of the educational system, ultimately reaching a university
mathematics lecture where the professor teaches us how to solve differential equations.
This phenomenon is not only valid for the academic education system. Without a doubt,
Usain Bolt had to learn how to walk before he could set the world record for the 100-meter
sprint race.

13Central limit theorem.
14Performance estimates are random variables, based on a finite number of runs.

34

The core idea of curriculum learning (CL) is that ML models – similarly to humans –
might as well benefit from an organised training process (curriculum). Depending on the
ML field, it might mean that a model does not receive all the training data at once, but
subsets of data are introduced at different times, or that it learns tasks of varying difficulty
in a structured manner. In this section, firstly, the general concepts of curriculum learning
are presented, and then the RL-specific CL is detailed. For a more thorough overview, we
refer the reader to [97], [98].

2.4.1 Easy2hard curriculum learning

Originally, the curriculum followed an easy2hard or starting small structure. After Selfridge
et al. [160] designed a curriculum for the cart pole control problem, Bengio et al. [96]
introduced CL by showing that an image-based shape recognition model could benefit
from an easy2hard structure. Two datasets of rectangle, ellipse, and triangle shapes were
given. One with general shapes, and the other with special cases of these shapes: squares,
circles, and equilateral triangles. The training with a 2-stage curriculum – first on the
special cases with less variability and then on the general shapes (target distribution) –
yielded significantly better performance than the traditional no-curriculum training. An
illustration of easy2hard CL is depicted in Fig. 2.8.

Figure 2.8: Illustration of the easy2hard CL from [98].

As an optimization problem, CL can be seen as a particular continuation method.
Continuation methods [161] are optimization strategies for non-convex criteria which solve

35

first an easier (smoother) objective and then gradually increase the difficulty (less smooth
function) until reaching the target objective, depicted in Fig. 2.9. From a transfer learning
point of view, the preceding objectives can be seen as stages of pre-training. From a data
distribution point of view, CL can be seen as focusing more on cleaner, less noisy data,
especially in the first stages of the training, and wasting less time on the noisier, harder
data [98], [162].

Figure 2.9: Illustration of the continuation method from [163].

2.4.2 Generalised curriculum learning

Even though easy2hard CL methods are shown to be superior compared to no-curriculum
baselines, interestingly, in some cases [164], [165], the opposite of easy2hard CL, the strat-
egy of hard2easy or starting big was beneficial. Methods of hard example mining [166],
[167] aim to select the most difficult examples. Consequently, the definition of CL was
broadened.

Definition of generalised curriculum learning: ”... a curriculum is a sequence of
training criteria over T training steps. Each criterion Qt includes the design for all the
elements in training a machine learning model, e.g., data/tasks, model capacity, learn-
ing objective, etc. Curriculum learning is the strategy that trains a model with such a
curriculum.” [98]

36

2.4.3 CL in supervised learning

In supervised learning, a CL framework typically consists of two main components: the
difficulty measurer and the training scheduler. The difficulty measurer assigns a difficulty
score to the samples. According to the difficulty score, the training scheduler can introduce
the subsets of data at different times15. If both the difficulty measurer and the training
scheduler are constructed by human prior knowledge, then it is referred to as predefined
CL [96], [170], [171]. If data-driven algorithms are applied, then it is considered to be an
automatic CL method. Automatic CL can be further categorised into self-paced learn-
ing [172], [173], transfer teacher [168], [174], RL teacher [164], [175], and other automatic
CL [176], [177].

2.4.4 CL in reinforcement learning

Compared to supervised learning, in reinforcement learning, CL is slightly different. One
of the most relevant differences is that for supervised learning the training dataset is given,
while in RL, it is generated by the agent. Thus, before the training, the training dataset
cannot be divided into groups based on difficulty. On the other hand, as the data col-
lection is part of the machine learning problem, there is more possibility of utilising CL.
Following [97], CL can typically control either the data collection or the data exploita-
tion process in RL. The data collection process can be controlled by changing the initial
state distribution [89]–[91], the reward function [178], [179], the goals [92]–[95], the envi-
ronment [175], [180], or the opponent [78], [181]. The data exploitation methods might
control the transition selection [86], [88] or intervene by modifying the transitions [84], [85].

15The training scheduler is referred to as pacing function in [168] and competence function in [169].

37

Chapter 3
Sim2real knowledge transfer for object
detection

Contents
3.1 Introduction . 40

3.2 Related work . 43

3.3 The S2R-ObjDet method . 47

3.3.1 Sim2real knowledge transfer . 47

3.3.2 Data generation . 49

3.3.3 Training . 57

3.4 Evaluation protocol . 57

3.5 Generalised confusion matrix for object detection 58

3.6 The InO-10-190 dataset . 61

3.7 Results . 64

3.7.1 Zero-shot transfer (ZST) . 66

3.7.2 One-shot transfer (OST) . 69

3.8 Ablation study . 74

3.8.1 Seed . 74

3.8.2 Texture and post-processing . 75

3.8.3 Data size . 76

38

3.8.4 Gravity, positional disturbance, and bounding-box calculation . . 77

3.8.5 Cutouts . 79

3.8.6 Faster R-CNN . 79

3.9 Robotic application . 80

3.10 Conclusion . 81

39

Robots working in unstructured environments must be capable of sensing and inter-
preting their surroundings. One of the main obstacles of DL models in the field of robotics
is the lack of domain-specific labelled data for different industrial applications. In this
chapter, we present a sim2real transfer learning method based on domain randomization
for object detection (S2R-ObjDet) with which labelled synthetic datasets of arbitrary size
and object types can be automatically generated. Subsequently, an object detection model
is trained to detect the different types of industrial objects. With the proposed domain
randomization method, we could shrink the reality gap to a satisfactory level, achieving
86.32% and 97.38% mAP50 scores respectively in the case of zero-shot and one-shot trans-
fers, on our publicly available manually annotated InO-10-190 dataset, containing 190 real
images of 920 object instances of 10 classes. The class selection was simultaneously based
on different and similar objects in order to test the robustness of the model in terms of
detecting different classes and differentiating between similar objects. Our solution fits
for industrial use as the data generation process takes less than 0.5 s per image and the
training lasts only around 12 h, on a GeForce RTX 2080 Ti GPU. Furthermore, the model
can reliably differentiate similar classes of objects by having access to only one real image
for training. To our best knowledge, this was the first work satisfying these constraints.
Moreover, we proposed the generalised confusion matrix (GCM) which is an adaptation of
the traditional confusion matrix to object detection. It offers a solution to the shortcomings
of the classical precision-recall-based mAP and F1 score. With GCM, the misclassification
error can be quantified and evaluated. For a short presentation and additional materials,
we refer the reader to the project page: www.danielhorvath.eu/sim2real.

3.1 Introduction

New-generation intelligent manufacturing (NGIM) is a recent trend embodying the in-
depth integration of new-generation artificial intelligence with advanced manufacturing
technology such as robotics. It became the driving force of the fourth industrial revolution
and it belongs to the human-cyber-physical system 2.0 (HCPS 2.0) framework. Contrary
to traditional manufacturing where robots work in structured environments and perform
high-accuracy, repetitive tasks with minimal sensory input, an NGIM system is designed
to be flexible and to take over as much intellectual and manual labor as possible. Thus,
human workforce can concentrate on more valuable creative work. [10]

Consequently, the main interest has been shifting towards adaptive robotic applications
that can cost-efficiently handle low-volume customised products and integrate human op-
erators with different skills and abilities. Computer vision plays an essential role here – the
highly researched field has already proven useful in pick-and-place, bin picking, grasping,

40

http://www.danielhorvath.eu/sim2real/

navigation, or quality assurance tasks. As two examples, Zeng et al. [182] created a vision-
based model that can predict parameters of motion primitives through trial and error
for robotic grasping and throwing, and Alonso et al. [183] designed a model for real-time
semantic segmentation of RGB images for a mobile robot application.

Data Generator

Training Dataset Validation
Dataset Test Dataset

Taking Real
Images

Training

ModelPretrained Model Evaluation

Synthetic images Task specific real images

Virtual / Simulation Domain

Automatic
Annotation

Real Domain

Set of
Hyperparameters

Set of
Parameters

3D Models

 : Synthetic images
 : Object detection

 : Task specific real images
 : Object detection

 : General real images
 : Classification

General real images

Manual
Annotation

Figure 3.1: Top. Pipeline of knowledge transfer. Bottom. Flowchart diagram of our
data generation, training, and evaluation process. The picture of the Boston bull is from
ImageNet [70].

In a computer vision context, deep convolutional neural networks (DCNNs) have been
performing incredibly well on large public datasets such as ImageNet [70] or MS COCO [71].
Having reached human-level performance in classification, the main focus of computer

41

vision research has shifted to object detection and led to networks such as the Faster R-
CNN [120], Single Shot MultiBox Detector (SSD) [124], and multiple versions of YOLO [34],
[121]–[123], [126]–[130]. Even though these networks outperform the traditional machine-
vision-based methods by a significant margin, their application in robotic systems has its
difficulties. One of the main obstacles in applying DL models is that they need to be
trained on sufficiently large, domain-specific, and expertly labelled datasets.

Levine et al. [49] conducted two experiments, in order to create a dataset of real images
for their DCNN model predicting the success of robotic grasp attempts, as well as to
control these attempts. Yielding records of more than 1.7 million grasp attempts with
the simultaneous use of 6–14 robots, the process took months to complete. This example
shows that, in general, collecting a dataset from the real world not only requires an immense
amount of resources but is a time-consuming process as well.

The main motivation behind transfer learning is to overcome the aforementioned ob-
stacle by transferring knowledge between tasks or domains [68], [69]. Sim2real transfer is
a special case of transfer learning, where the source domain is the virtual simulation of
the real world, while the target domain is the physical reality itself [184]. With sim2real
knowledge transfer, the model can be trained in a virtual simulation, having the necessary
amount of labelled synthetic data. In the case of computer vision, the images are ren-
dered, and the labels, too, can be generated for them in a self-supervised way. Thus, the
time-consuming process of data collection and labeling can be omitted. As the domains
of training and test datasets are inherently different, ceteris paribus, the learnt model
will perform poorly in the target domain. The phenomenon of performance loss from the
simulation to the real domain is called reality gap. Domain adaptation [185] and domain
randomization [186], [187] are two ways of shrinking this gap.

Our contributions can be summarised as follows:

• Our novel sim2real domain randomization method for object detection (S2R-ObjDet)
which describes the data generation process, and our sim2real training pipeline.

• Our InO-10-190 dataset, which is a real-world dataset of 190 manually annotated
images (RGB and depth) containing 920 objects of 10 classes that address the prob-
lem of high class similarity to validate our method. The dataset is publicly available
alongside our code and can serve as a benchmark for object detection algorithms.

• For evaluation, we introduced the generalised confusion matrix (GCM) which is an
altered version of the traditional confusion matrix fit to object detection. It proved
to be extremely useful for detecting and quantifying misclassifications which is the
primary cause of performance loss in the case of similar classes.

42

• A real-world robotic implementation of the method as a proof of concept containing
a ROS-based robot control system.

• Our implementations of our S2R-ObjDet method1, and our robot control framework2

that are available at the project’s git repositories. Both can be used as out-of-the-box
software modules for industrial robotic applications.

The results can be highlighted as follows:

• We achieved 86.32% mAP50 and 97.38% mAP50 scores in zero-shot and one-shot
transfers that show the usability of our methods even in the case of an industrial
application where high reliability is crucial.

• Our experiments show that having even only one sample image from the target
domain significantly improves the model’s performance for similar classes.

• A thorough ablation study focusing on finding the key factors of the data generation
process.

The industrial benefit of our work is a freely available tool streamlining the training
of CNN-based models for object detection. Our built-in sim2real domain randomization
method spares the user the effort of collecting and annotating a large dataset, as it au-
tomatically generates training data from 3D models. Optionally, one annotated image
with all relevant objects can be added for improved performance. With training being
automated as well, the entire workflow from 3D models to trained CNN takes only around
13 h.

In Sections 2.2, the problem statement of the field of transfer learning was outlined. In
further parts, in Sections 3.2 the related work is presented. In Sections 3.3 and 3.4, our
S2R-ObjDet method is outlined with the evaluation protocol. In Section 3.5, our GCM
is introduced. In Sections 3.6 and 3.7, our InO-10-190 dataset and our results are shown.
Additionally, in Section 3.8, a thorough ablation study of our method is presented. Finally,
Section 3.9 shows a real-world robotic implementation of our method.

3.2 Related work

Tobin et al. [186] trained a modified version of VGG-16 [111] deep neural network ar-
chitecture for object localization. They generated non-realistic synthetic RGB images

1https://git.sztaki.hu/emi/sim2real-object-detection
2https://git.sztaki.hu/emi/robot_control_framework

43

https://git.sztaki.hu/emi/sim2real-object-detection
https://git.sztaki.hu/emi/robot_control_framework

randomising the number and shape of the distractor objects, the position and texture of
all objects, the texture of the background, the position, orientation and the field of view
of the camera, the number of lights in the scene, the position, orientation, and specular
characteristics of the lights, and the type and amount of random noise added to images.
The random textures were either a random single colour, a gradient between two colours,
or a checker pattern of two random colours. The following non-industrial objects were
used: cones, cubes, cylinders, hexagonal prisms, pyramids, rectangular prisms, tetrahe-
drons, and triangular prisms. The images were rendered with the built-in renderer of the
MuJoCo Physics Engine [188], and no real images were used for training the model. They
achieved around 1.5 cm accuracy in the real-world environment. Tobin et al. conducted
further research [50] where they trained a deep neural network for grasp planning using
only synthetic images and domain randomization, and achieved an 80% success rate in a
real-world environment.

Borrego et al. [189] presented a plug-in for the Gazebo simulator [190]. Introducing
variation reduced the reality gap between simulated and real-world data. In the case study,
three types of objects were detected: box (cube), cylinder, and sphere. The simulated
scenes contained a ground plate and a single light source. The objects were placed on a
grid to prevent collusion, but they were rotated randomly3. Then, the camera and the light
source were moved to random positions. 4 different types of textures were used, namely:
flat, gradient, checkerboard, and Perlin noise [191]. For training, the SSD [124], and
separately, the Faster R-CNN [120] networks were used. With the two networks, 70% and
88% mAP50 were achieved, respectively, using 121 real images. Training the same networks
with 9000 simulated images yielded 64% and 82% mAP50, respectively. Interestingly, the
hybrid approach (using real and synthetic images) accomplished 62% and 83% mAP50,
respectively. For all experiments, IoU 0.5 threshold (mAP50) was used, and the test results
were validated on 121 real images (different from the 121 images used for the training).
A follow-up ablation study [187] revealed that Perlin noise has a crucial influence on the
performance of the model. Furthermore, data generation process was further accelerated
to 9000 full-HD images in roughly 1.5 hours (around 0.6 s per image).

Pashevich et al. [184] trained manipulation policies in a simulation environment with an
object localization proxy task. Depth images for training were simulated in PyBullet [192]
and gathered with a Kinect-1 camera from the real world. For finding the best data aug-
mentation transformation and their order, Monte Carlo Tree Search (MCTS) [193] was
used. The transformations were selected from the Python Image Library (PIL). The trans-
formations were evaluated individually and as a sequence as well. From all transformations

3In this regard, we found that introducing some disturbance to object placement significantly increases
the performance, see in Section 3.8.4.

44

examined, the cutout transformation [194] performed best on real images (however, in our
experiments, this was not the case for RGB images, see in Section 3.8.5), and the best
sequence of transformations was: cutout, erasing an object, white noise, edge noise, scale,
salt noise, posterise, and sharpness, in this order. With the aforementioned sequence, 1.09
± 0.73 cm position error was achieved in the real environment, for cubes of 4.7 cm edge
length.

James et al. [195] trained an end-to-end robotic controller on synthetic data with domain
randomization. The inputs of the deep-neural-network-based model were an image and the
joint angles of the robot, while its output were motor velocities. The task was an abstract
tidying manipulation, namely, putting a cube into a basket. Similarly to [189], Perlin noise
was used as a perturbation. The model was examined in dynamically changing illumination
settings, in the presence of distractors, including human presence, new cube size in test
time, and with a moving basket. Experiments yielded at least a 75% success rate in all
conditions, except for a spotlight and a smaller cube in test time. In these cases, the model
had a 56% and a 41% success rate, respectively.

Devo et al. [196] used domain randomization to train a target-driven visual navigation
model. The goal was to find a specific object in a maze. Maze wall heights, maze wall
textures, maze floor textures, light colour and intensity, and the light source angle were
subject to randomization. For simulation, the Unreal Engine 4 [197] was used. An average
of 72% success rate was achieved in simulation, and 46% in the real world. The experiments
showed that direct sim2real transfer is possible for this kind of problem as well.

Chen et al. [198] created the Domain Adaptive Faster R-CNN model for cross-domain
object detection. Domain shift stemming from image-level and instance-level shifts were
tackled with an approach based on H-divergence theory and adversarial training. The
study focuses on street images for self-driving cars where the domains are disparate due
to different camera types and setups, different cities and diverse appearance of objects, or
the particular weather conditions. Some experiments were also carried out with sim2real
knowledge transfer, as the model was trained on SIM 10k [199] and evaluated on the
Cityscapes dataset [200]. Their method improved the performance of the Faster R-CNN
model from 30.12 AP50 to 38.97 AP50 in the case of the car class.

Focusing on street scenarios, Sankaranarayanan et al. [201] proposed an unsupervised
domain adaptation approach based on generative adversarial networks for semantic seg-
mentation problems. For the synthetic source domain, the SYNTHIA [202] and the
GTA V [203] datasets, and for the target domain, Cityscapes dataset [200] were used. The
approach achieved 36.1 mIoU and 37.1 mIoU scores transferring knowledge from SYNTHIA
and GTA V, respectively. Without domain adaptation, the method scored 26.8 and 29.6
mIoU.

45

Tremblay et al. [204] generated synthetic images with domain randomization techniques
to perform object detection of cars in street scenarios. 100K images were generated with
maximum 14 cars each, selected randomly from 36 car models. The models were evaluated
on the KITTI dataset [205]. Three DCNN architectures were trained (Faster R-CNN [120],
R-FCN [206], and SSD [124]), scoring 78.1, 71.5, and 46.3 AP50, respectively, on the single-
class object detection problem. Interestingly, better results were obtained than by training
the same architectures on the virtual KITTI dataset [207] which has a high correlation to
the KITTI dataset. The performance could be improved by fine-tuning the models on real
images. With 6000 real images, the performance of the Faster R-CNN model reached 98.5
AP50.

Barisic et al. [35] proposed an approach to generate a synthetic aerial dataset for un-
manned aerial vehicle (UAV) monitoring. The images are rendered in Blender [137]. In
order to facilitate the learning of a shape-based representation, they applied random tex-
tures on the UAV models but added real background from the Polyhaven [208] dataset.
They achieved a 17% and a 3.7% AP50 improvement with the tiny version of YOLOv4 and
a rise of 20% and 1.1% AP50 in the case of the Faster R-CNN, compared to the baselines
without texture randomization on two real-world datasets.

Hinterstoisser et al. [209] inserted 3D models of objects in real images, using OpenGL
with Phong shading [210] for rendering. Small perturbation were permitted in the am-
bient, diffuse, and specular parameters, and the light colour. Gaussian noise and a blur
with Gaussian kernel were added to better integrate the objects with the background. A
Faster R-CNN model was primarily used for training, with freezing the weights of the fea-
ture extractor. The latter significantly improved the performance of the model (although,
Tremblay et al. [204] later reported the opposite effect in their case).

Zhang et al. [211] propose an adversarial discriminative sim2real approach to transfer
visio-motor policies. The method was demonstrated in a table-top object-reaching task.
A blue cuboid object had to be reached with a velocity-controlled 7 DoF robot arm. The
method could reduce the real data requirement by 50%, while 97.8% success rate and
1.8 cm control accuracy were achieved.

Clever et al. [212], [213] proposed a method to predict human position (resting on a bed)
and contact pressure from depth data and gender information. The method achieved 3.837
MSE(kPa2) trained on 97K synthetic images. In comparison, the same method reached
3.151 MSE(kPa2) trained on 11K real images and 2.849 MSE(kPa2) trained on both real
and synthetic images (108K). For evaluation, the SLP dataset [214] was used.

Gomes et al. [215] proposed a simulated model for the GelSight tactile sensor. Having
computed the height map of the elastomer, the internal illumination of the elastomer is

46

calculated. The usefulness of the model was also demonstrated with a sim2real classi-
fication task. For the study, 12 texture maps resembling real objects were created and
randomly perturbed on the captured synthetic data, improving the classification accuracy
from 43.76% to 76.19%.

The above works are diverse in terms of the problem itself, the input type, the domain
of the application, and the amount of synthetic and real images used to train the model,
making a complete comparison a challenge. Nevertheless, a general overview organised by
selected characteristics is presented for reference in Tab. 3.1. In general, certain limitations
of the above works relate closely to our work (solving object detection):

• The classification part of the problem is less challenging as the works use simple
shapes such as cubes, spheres, and cones, or even have one class only.

• The works rely on considerably more synthetic and real images for training.

Even though the cited works use transfer learning (domain adaptation or domain ran-
domization) to reduce the reality gap, they do not solve the same machine learning problem,
and may use different models as well. All of this needs to be taken into consideration if an
in-depth comparison is desired.

3.3 The S2R-ObjDet method

This section presents our sim2real domain randomization method for object detection (S2R-
ObjDet). In Section 3.3.1, the sim2real training pipeline is outlined. Then, in Section 3.3.2,
the data generation module is detailed. Finally, in Section 3.3.3, the details of the training
are presented. The implementation is freely available at our git repository4.

3.3.1 Sim2real knowledge transfer

The flowchart diagram of our data generation, training, and evaluation process is depicted
in Fig. 3.1. It can be broken down into functionally separable tasks. The data generation
process creates randomised and post-processed synthetic images of given objects. It also
automatically generates the annotations for the images. Thus, the output of the data
generation process is a set of images paired with their labels grouped into a training and
a validation dataset.

4https://git.sztaki.hu/emi/sim2real-object-detection

47

https://git.sztaki.hu/emi/sim2real-object-detection

Table 3.1: Summary of related works. Abbreviations are the following Sim: Simulator,
Synt: Synthetic, Img: Images, P&P: Pick-and-place, Segm: Segmentation, Class: Clas-
sification, ObjDet: Object detection, Nav: Navigation, FrR-CNN: Faster R-CNN, MJC:
MuJoCo [188], Gaz: Gazebo [190], PyB: PyBullet [192], V-R: V-REP [216], UE4: Unreal
Engine [197], OGL: OpenGL [217], DFP: DART [218], FleX [219], Pyrender [220], Blen:
Blender [137], acc: accuracy, a: domain adaptation (otherwise domain randomization), u:
unlabelled. The AP and mAP scores are with IoU=0.5. YCB [221].

Work Problem Input Domain Base
Model

Sim Synt.
Img.

Real
Img.

Results

Tobin [186] ObjDet RGB Shapes VGG-16 MJC 5K–
50K

0 1.5 cm acc

Tobin [50] Grasping Depth YCB CNNs MJC 2K/obj 0 80% success
Borrego [189] ObjDet RGB Shapes FrR-CNN Gaz 9K 0 82% mAP

9K 121 83% mAP
SSD 9K 0 64% mAP

9K 121 62% mAP
Pashevich [184] ObjDet Depth Cubes ResNet-18 PyB 2K 0 1.09±0.73 cm

Placing Cups — 0 15/20
James [195] P&P RGB,

joints
Cube CNNs V-R 100K–

1M
0 ≥41% success

Devo [196] Nav 2xRGB — CNNs UE4 540K 0 46% success
Chena [198] ObjDet RGB Street FrR-CNN — 10K 3Ku 38.97 AP
Sankarana-
rayanana [201]

Segm. RGB Street GAN — 25K 5Ku 37.1 mIoU

Tremblay [204] ObjDet RGB Street FrR-CNN UE4 100K 0 78.1% AP
100K 6K 98.5% AP

R-FCN 100K 0 71.5% AP
SSD 100K 0 46.3% AP

Barisic [35] ObjDet UAV YOLOv4-t Blen 32k 0 +17% AP
FrR-CNN +20% AP

Hinter-
stoisser [209]

ObjDet RGB House -
hold

CNNs OGL 20K 0 ca. 70% mAP

Zhang [211] Grasping RGB Cube VGG-16 V-R 3K 93+
186u

97.8% success,
1.8 cm acc

Clever [212],
[213]

Contact
pressure

Depth Humans CNNs DFP 97K 0 3.837 kPa2

97K 11K 2.849 kPa2

Gomes [215] Class. RGB Shapes ResNet-50 Gaz 1470 0 76.19% acc
Our results ObjDet RGB Indus- YOLOv4 PyB 4K 0 86.32% mAP

trial 2K 1 97.38% mAP

48

For training, only the images from the training dataset are used. As the initial layers
of the neural network perform low-level image processing tasks such as detecting contours,
lines, or edges, we utilised a pretrained image classifier model as a feature extractor of our
object detector. This is the first phase of our knowledge transfer, depicted in the top-left
section of Fig. 3.1. The knowledge transfer goes from {DG, TG}, where DG is the domain of
the dataset of general public images and TG is classification, to {DS, TS}, where DS is the
domain of synthetic images (source domain of the sim2real knowledge transfer), and TS is
object detection. Here, DG ̸= DS, and TG ̸= TS. The second phase of knowledge transfer
is the sim2real transfer which goes from {DS, TS} to {DT , TT}, where DT is the domain
of our industrial environment (target domain), and TT is object detection. Here, DS ̸= DT

but TS = TT . Although the pretrained network does possess some learnt knowledge from
the domain of a given general public dataset (DG), it does not have direct knowledge of the
target objects. Consequently, DG ̸= DS ̸= DT . Even though DG ̸= DT , the characteristics
of the domains are similar.

3.3.2 Data generation

The data generation process is responsible for the creation of synthetic images paired with
accurate automatic ground-truth annotations. In several stages of this process, artificial
random perturbations are applied as domain randomization techniques. It is important to
mention that although cluttered scenes may occur, we restrict our focus to images without
significant occlusion.

Framework

For data generation, the PyBullet [192] physics simulator was utilised since it has an easy-
to-use, intuitive API, including an image renderer tool, and an integrated physics simulator
where the gravitational force can be simulated easily.

The duration of dataset generation is a relevant aspect of the method, as in the industry,
on many occasions, it is not feasible to wait long hours or even days to start the training,
which can be a time-consuming process itself. One of the advantages of domain random-
ization over domain adaptation is that it is generally faster as images do not need to be
photo-realistic. In our case, for data generation, we could achieve less than 0.5 s per image
on a GeForce RTX 2080 Ti GPU. With 4000 images, this amounts to around 33 minutes.
If 1 image is rendered in 1 minute (which was plausible in the case of photo-realistic images
at the time of the research), then instead of 33 minutes, the aforementioned 4000 images

49

would take more than 66 hours5. Having generated the dataset, the training lasts around
12 h, thus a complete generation and training process can be executed automatically in
around 13 h.

Object generation

The framework is capable of placing any type of object into the simulation if its 3D de-
scription file is given. In industrial applications, which are the focus of this research, these
3D models are often readily available.

The most relevant input parameters of the object generation process are summarised
in Tab. 3.2 and the process works as follows:

• A horizontal plane is placed at the vertical z = 0 position.

• According to the grid size ngrid ∈ Z+ and the grid spacing dspace ∈ R+ parameters,
the x, y ∈ R coordinates of the grid points are set.

• The vertical coordinates of the grid points are set by dheight ∈ R+.

• The objects are not placed exactly at the grid points. The x, y, and z coordinates
of the objects are obtained from uniform distributions described in Eq. (3.1).

robji ∼ U(rgridi − ϵposi · dspace, r
grid
i + ϵposi · dspace) | i = x, y, z, (3.1)

where U(·, ·) is the uniform distribution, robji ∈ R is the i direction element of the
pose (position and rotation angles) of the object, robj = [robjx , robjy , robjz , robjrx , r

obj
ry , r

obj
rz].

Furthermore, rgridi ∈ R is the grid position and ϵposi ∈ [0, 1] is normalised maximum
shift in i direction. Note that rgrid = [rgridx , rgridy , rgridz] and ϵpos = [ϵposx , ϵposy , ϵposz].
Typically ϵpos = [0.1, 0.1, 0.0], which corresponds to a ±10% disturbance in the x
and y direction. It is important to note that at this stage only the x,y, and z
components of the robj vector are set, the rotation parameters rx,ry, and rz are set
later.

• Once object selection has been performed, the appropriate 3D model of the object
is loaded into the specific coordinates. Predefined weights describe the probability
of selecting a specific object. Furthermore, a distracting cuboid object (which is

5Since our experiments in 2021, methods based on DA became significantly faster, thus the time ad-
vantage might not be that relevant.

50

not in any of the classes) or a void object (leaving that grid point empty) can be
selected. The sizes of the distracting objects are also individually randomised. The
aforementioned probabilities are set by pobjects.

• The objects are also randomly rotated around the x, y, and z axes, described in
Eq. (3.2).

robji ∼ U(Erot
i,lower, E

rot
i,upper) | i = rx, ry, rz, (3.2)

where U(·, ·) is the uniform distribution, robji ∈ R is the corresponding element of the
robj = [robjx , robjy , robjz , robjrx , r

obj
ry , r

obj
rz] vector. Furthermore, Erot

i,lower ∈ R and Erot
i,upper ∈ R

are the limits of rotation around the corresponding axis.

• The objects and the ground plane are given some random textures drawn from three
public datasets [222]–[224], with the probability of ptexture. Some examples of the
textures are shown in Fig. 3.2. Random RGB colours are assigned to the objects (or
to the ground plane) which do not receive any texture.

• Before rendering the image, the objects are dropped down from their original position
to the ground plane. Thus, the objects are captured in a natural stable position.
The simulation of the free fall takes around 0.05–0.1 s per scenario (with every step
included, the generation of an image with its label is around 0.45–0.5 s).

Figure 3.2: Some examples of the textures used from [222]–[224].

51

Table 3.2: The most relevant input parameters of the data generator module in terms of
object generation. Param: Parameter.

Param. Set Type Description
ngrid Z+ scalar The grid size (ngrid × ngrid).
dspace R+ scalar The grid spacing. The distance between the adjacent

grid points.
dheight R+ scalar The position of the grid (initial object position) in z

direction.
ϵpos R3 vector Contains the proportionate (to the grid spacing) pertur-

bation limits in the directions of x, y, and z around the
centre point.

Erot R3×2 matrix Erot describes the lower and upper bounds for the pos-
sible rotation angles of the directions in x, y, and z.

pobjects Rnobj+2 vector Contains the selection probabilities of the given objects
(including the distractor object and the void object).

ptexture R scalar The probability that a specific object or the ground
plane has a random texture. Otherwise, it gets a ran-
dom colour.

52

Image rendering

For rendering an image, the camera pose, its inner parameters, and additional parameters
must be set. The most relevant parameters of the image rendering are presented in Tab. 3.3.
The algorithm works as follows:

• The camera is placed in a randomised position pointing to a random point around
the centre of the grid defined by Rtarget ∈ R3×2 and Rcam ∈ R3×2. The randomization
is constrained to ensure that the centre points of all objects appear on the rendered
image.

rtargeti ∼ U(Rtarget
i,lower, R

target
i,upper) | i = x, y, z, (3.3)

where rtargeti ∈ R is the i coordinate of the camera target position, Rtarget
i,lower and R

target
i,upper

are the limits of the uniform distribution for the ith coordinate.

rcami ∼ U(Rcam
i,lower, R

cam
i,upper) | i = Ψ,Θ, d, (3.4)

where rcami ∈ R is the corresponding element of rcam = [rcamΨ , rcamΘ , rcamd] vector,
describing the rotation angle around the global z axis, the pitch angle from the
global x–y plane, and the distance between the camera and the target point. Rcam

i,lower

and Rcam
i,upper are the corresponding lower and upper limits.

• The camera field-of-view (FOV) θFOV and its additional intrinsic parameters are set.
Image width and height are obtained from a uniform distribution defined by Eq. (3.5)
and Eq. (3.6).

mwidth ∼ U(mwidth
lower ,m

width
upper), (3.5)

where mwidth ∈ N is the width of the image in pixels and mwidth ∈ N2 vector contains
the lower and upper bound of the image width.

mheight ∼ U(mheight
lower ,m

height
upper), (3.6)

wheremheight ∈ N is the width of the image in pixels and mheight ∈ N2 vector contains
the lower and upper bound of the image height.

• The RGB, D (depth), or RGB-D images are taken, defined by mtype ∈ {0, 1, 2}.
RGB-D images are created by concatenating the RGB and the D images. For one
layout (object generation), only one image is taken.

53

Table 3.3: The most relevant input parameters of the data generator module in terms of
image rendering. Param: Parameter.

Param. Set Type Description
Rtarget R3×2 matrix The camera points to a certain point in the 3D space. Rtarget

describes the lower and upper bound of the camera target
point in the directions of x, y, and z.

Rcam R3×2 matrix The pose of the camera is defined by 3 parameters: the rota-
tion angle around the global z axis, the pitch angle from the
global x–y plane, and the distance between the camera and
the target point. Rcam describes the lower and upper bound
of these parameters.

θFOV R scalar The field-of-view of the camera.
mwidth N2 vector The mwidth parameter describes the lower and upper bound

of image width in pixels.
mheight N2 vector The mheight parameter describes the lower and upper bound

of image height in pixels.
mtype {0, 1, 2} scalar Three types of images can be rendered: 3-channel RGB im-

ages, depth images, and 4-channel RGB-D images.

54

Label generation

Having generated the objects and rendered the image, the ground-truth annotation must
be computed. As it is object detection, the label y = {(bi, cclassi) | i = 1, 2, . . . , N}, where
bi = [xi, yi, wi, hi] represents the bounding box (BB) coordinates and cclassi is the class label
(see in Section 2.1.5).

The aforementioned ground-truth generation is an automatic process involving a coor-
dinate transformation from the simulation 3D world coordinate system to the image 2D
coordinate system.

The 4×4 transformation matrix is the matrix product of the view matrix and projection
matrix of the camera, respectively. In order to transform a point from the world coordinate
system to the image space, it must be multiplied with this transformation matrix and then
scaled back by its fourth coordinate to get the true projection. For a detailed explanation
of the projection, we refer the reader to [225].

Furthermore, we implemented two ways of computing the bounding boxes. The two
approaches differ in the number of points that are transformed into the image space. One
approach transfers only the 8 points (per object) of the world 3D axis-aligned bounding
boxes (AABB), which is available in the PyBullet simulator, whereas the other transforms
all the points of the objects to the image space. Henceforward, we refer to the former
approach as the 8-point method and the latter as the all-point approach. Having obtained
the transformed points, the second part of the algorithm is the same in both cases: the
minimum and maximum values in x and y directions are selected to define the limits of
the BBs. The centre points can be computed as the arithmetic means of the minimum and
maximum values. As a result, the latter method gives tighter, more accurate bounding
boxes at the cost of extra computation.

Post-processing

The technique of domain randomization was performed in multiple steps of the previously
defined synthetic image generation process. In the post-processing phase, as a domain
randomization technique, additional artificial noise is introduced to alter the images. The
images are perturbed with a randomised multi-colour pepper-and-salt noise and a Gaussian
blur. Furthermore, as Pashevich et al. [184] found the rectangle cutouts useful for depth
images, experiments were made with rectangle cutouts, and additional circle, as well as line
cutouts. The noise types are shown in Fig. 3.3, described in Tab. 3.4, and were applied in
the following order: 1.) rectangle cutout, 2.) circle cutout, 3.) line cutout, 4.) multi-colour
pepper-and-salt, and 5.) Gaussian blur.

55

Table 3.4: The types of noises in post processing.

Name Description
Multi-colour
pepper-and-salt

With a given pmc probability, every channel of every pixel is
set either to zero or to the maximum value.

Gaussian blur With a given pgauss probability, the whole image is blurred
with a randomised filter size.

Cutout A given number of rectangle-, circle-, or line-shaped regions
with randomised dimensions and at randomised positions are
coloured to a random RGB value.

The goal of post-processing is to force the model not to learn the synthetic domain-
specific characteristics, but to try to learn the domain-independent underlying data rep-
resentation. The ablation study on our experiments, described in Section 3.8, shows that
having the post-processing module undoubtedly improves the performance of the models
with the test dataset. Nevertheless, it also reveals that the added cutout noises did not
improve the performance compared to the default Gaussian blur and multi-colour pepper-
and-salt noise in the case of our RGB images.

Figure 3.3: Post-process transformation on a blank image.

56

Table 3.5: The most relevant advanced data augmentation tools in the training process.

Name Description
Angle Randomly rotates images.
Saturation Randomly changes the saturation.
Exposure Randomly changes the brightness.
Hue Randomly changes the hue colour channel.
Mosaic Combine 4 random images into a single, assembled mosaic [34].
Jitter Randomly changes the size of the images and their aspect ratio.
Random Randomly resizes network size after every 10 batches.

3.3.3 Training

The method is compatible with arbitrary object detection models, although their efficiency
might vary. At the time of the research, ViTs were at their early stage and CNN-based
architectures dominated the object detection benchmarks. Therefore, we have chosen the
CNN-based YOLOv4 [34] architecture for the following reasons:

• At the time of the research, it had the best speed and accuracy trade-off which made
it a good fit for robotic applications. It also has a tiny version, allowing it to run in
real-time even on a microcomputer such as a Raspberry Pi or NVIDIA Jetson Nano.

• Its training framework contains additional advanced data augmentation tools. For
more information, we refer the reader to [34]. These tools help to introduce further
perturbation to the system.

For the training, a model pretrained on ImageNet [70] is used. The most relevant
hyperparameters for the advanced data augmentation tools are shown in Tab. 3.5, keeping
the original names of the parameters.

In Section 3.8.6, we present the results of our method only changing the object detection
model from YOLOv4 to Faster R-CNN.

3.4 Evaluation protocol

In this section, we outline the metrics used to evaluate our models. One of the bases of
our evaluation is comparing the mAP score of the different models. The mAP score is

57

described in Section 2.1.5. Here, we define how we measured the reality gap and outline
further details of our evaluation process. Our novel evaluation metric, the generalised
confusion matrix is presented separately in Section 3.5.

To evaluate the solution of the classical machine learning problem, (training and eval-
uation on the same domain), real-world images would not be needed. In this case, the
performance is assessed on the generated validation dataset that is not used for training
but comes from the same distribution Ptrain(X) = Pvalid(X). The solution can be assessed
by the value of the mAP score of the model on the valid dataset, and the capability of
generalization (within the specific domain) can be measured by comparing the performance
of the model on the training and the validation datasets, as in Eq. (3.7).

GML = mAPtrain −mAPvalid, (3.7)

where GML ∈ R is the performance gap between the model’s performance on the train
(mAPtrain) and the validation (mAPvalid) sets measured with the mean average precision
metric (mAP).

To evaluate the performance of the knowledge transfer, a manually annotated test set
of real images is needed. In this case, Pvalid(X) ̸= Ptest(X). We expect that the given
model performs notably worse on the test set than on the validation and training sets.
To measure the magnitude of the reality gap, we can define it as the difference of the
performance of the model on the validation and test sets, as shown in Eq. (3.8).

Greality = mAPvalid −mAPtest, (3.8)

where Greality ∈ R is the reality gap.

As presented in detail in Section 3.7, several training runs were carried out to test our
method. For every dataset generated, three independent training sessions were conducted,
resulting in three different models (sets of weights) in order to measure the deviance of the
training process. The average performance of the models refers to the arithmetic mean of
the results of these three models. We also use the F1 score measure, which is defined as
the harmonic mean of the precision and the recall values.

3.5 Generalised confusion matrix for object detection

Alongside the S2R-ObjDet method, one of the added values of this research is the proposed
generalised confusion (GCM) which is an adaptation of the traditional confusion matrix

58

to object detection. Confusion matrix is standard for classification, however, to our best
knowledge, it has never been utilised for object detection before publishing our results
in [1]. Since then, a similar concept was published in [226].

Most typically, the methods are evaluated on the mAP or F1 score derived from the
precision-recall curves of the models, see in Section 2.1.5. Nevertheless, these metrics have
disadvantages, most importantly, they do not address the problems of object misclassifica-
tion, false positives, and false negatives. Even though a method’s mAP or F1 score would
decrease if an object is detected but misclassified, it is equivalent to a scenario when the
model completely failed to detect any object in that position. Thus, detecting misclassifi-
cation errors is highly beneficial for analyzing and improving the models’ performance.

The confusion matrix tracks misclassifications in the context of classification problems
(see in Section 2.1.4). In the case of classification problems, for every ground truth, there
is exactly one prediction, and for every prediction there is precisely one ground truth. The
prediction can be either correct or incorrect, but the 1-1 ratio is fixed. For object detection,
for every image, the ground truth and equally the output of the given model are lists, thus
for one ground truth there can be zero, one, or any number of predictions and vice versa.
When there is no prediction to a ground truth, it means that the model did not find any
object (of any class) at that position (false negative). On the other hand, if there is a
prediction belonging to no ground truth, it means that there is a prediction where there
should not be (false positive). These scenarios cannot be handled with a classical confusion
matrix.

Thus, we introduce the generalised confusion matrix Dgen ∈ NC+1×C+1 and use it as
an additional performance measure. The adaptation is depicted in Fig. 3.4 and detailed
below:

• Adding an extra row and an extra column to the classical confusion matrix. Thus,
there are C + 1 rows and columns, where C ∈ Z+ is the number of classes. The
additional column represents the objects that are not predicted to any of the classes
but actually belong to one class (false negatives). On the other hand, the additional
row of the matrix represents the cases when the model predicted an object of a class
in a position where there should not be any object (false positives).

• The values of the diagonal, Dgen
i,i , are the correct predictions. For simplicity, the

last element of the diagonal is zero, Dgen
C+1,C+1

.
= 0. This element should contain the

number of objects that are not in the images and the model rightfully did not find
them, which does not have any meaning.

59

• As more than one prediction can belong to one ground-truth object, a given ground-
truth object appears in the matrix as many times as many predictions are paired with
it. Therefore, contrary to the traditional confusion matrix, the sum of all elements
in the matrix will not necessarily be equal to the sum of all ground-truth objects or
predictions. A prediction-GT pairs are selected based on their class-independent IoU
scores, see in Section 2.1.5.

Figure 3.4: Generalised confusion matrix (GCM). In the cyan frame, the traditional 10×10
confusional matrix for the 10 classes. The correct detections are in the diagonal, marked
with red dotted lines. An extra row is added, marked in green, to the predictions that do
not belong to any ground truth object (false positives). Furthermore, an extra column is
added, marked in yellow, for the objects that were not found (false negatives). Finally, for
simplicity, marked in orange, the extra square at the bottom right of the matrix which is
zero by definition. In this example, it can be seen at a glance, that several (62) bonnet
objects were misclassified as body objects, and only 16 bonnet objects were classified
correctly.

Utilising the GCM, not only the class-specific performance of the model can be easily

60

assessed, but the misclassification can be seen at a glance. Misclassification is especially
important in the case of similar classes as it could be the primary cause of performance
loss, as it is shown in our case study in Section 3.7, and it is not shown in the traditional
precision-recall curve.

As the predictions of the given object detection model depend on the τcon confidence
threshold6, the GCM depends on τcon as well. Thus, it is beneficial to find the optimal
τcon based on the precision-recall curve or the F1 score, and then plot the GCM with the
optimal τcon.

3.6 The InO-10-190 dataset

This section presents our InO-10-190 dataset which serves as the test dataset, detailed in
Section 3.7.

Ten industrial parts were selected for the dataset. Object diversity as well as object
similarity were the two major points of consideration. The former helps us to evaluate
the detection performance of the model for various types of objects, whereas the latter
is important in assessing the classification performance of the model. In general, it is
easier to misclassify objects with similar features. Thus, this problem can be considered
to be more challenging than the detection of less complex and fairly different shapes such
as cubes and spheres. The selected objects are depicted in Fig. 3.5, and their virtual
counterparts in Fig. 3.6. These images are samples of X ∈ X obtained from two different
P (X) probability distributions. The virtual images are from the probability distribution
PS of DS = {X , PS(X)}, while the real images are from the probability distribution PT of
DT = {X , PT (X)}. It is important to note that the InO-10-190 test dataset contains only
the real images, the virtual models are presented here only for comparison.

As it can be seen, on one hand, objects of different sizes, shapes, colours, and materials
were selected to increase diversity. On the other hand, some objects share similar charac-
teristics, such as circular holes. Furthermore, two parts, the bonnet (#7) and the body
(#8) were chosen because of their high level of similarity, as shown in Fig. 3.7.

Constructing the dataset, 190 real images of 920 object instances were taken with differ-
ent layouts and illumination settings. The images were captured with an Intel RealSense
D435 camera. For easy and fast image capturing, a frame was designed that holds the
camera 310 mm from the ground. A 300×210×10mm light blue wooden base supports
the frame – this is also where the parts were placed. The images show not only this base

6Only the predictions with confidence pconi ≥ τcon are accepted, see in Section 2.1.5.

61

1

2

3

4

5

6

7

8 9

10

3

F

Figure 3.5: The selected industrial parts in the InO-10-190 dataset. Their names in order
of their identifier numbers are the following: 1. L-bracket, 2. U-bracket, 3. angle bracket,
4. seat, 5. pipe clamp, 6. handle, 7. bonnet, 8. body, 9. ball, 10. cable shoe. The letter
‘F’ designates the camera holder frame. The green dashed lines show the borders of the
cropped images.

Figure 3.6: The 3D models of the selected industrial parts in the InO-10-190 dataset. Their
names in order of their identifier numbers are the following: 1. L-bracket, 2. U-bracket,
3. angle bracket, 4. seat, 5. pipe clamp, 6. handle, 7. bonnet, 8. body, 9. ball, 10. cable
shoe. Their scaling factors are different for better visualization.

area but the background (tabletop) as well – this is done on purpose. In order to have a
slightly different dataset as a reference, we also transformed the aforementioned dataset
by cropping the images to fit in the wooden base. The cropped area is signed with dashed
green lines in Fig. 3.5. Some examples of cropped images are shown in Figs. 3.14 and 3.18.

The annotations for the test dataset were labelled manually and saved in the YOLO

62

Figure 3.7: The similarity of the body and the bonnet objects.

annotation format. As it contains all the necessary bounding boxes and class information,
other annotation formats can be generated from them. We emphasise that these images
of real objects were not used at any point for training the models, except in the case of
one-shot knowledge transfer. In this case, only one real image was used. The experiment
of one-shot transfer is presented in Section 3.7.2.

For all images, the matching depth images are recorded as well. The depth images are
transformed in a way that each pixel point of the RGB image can be associated with the
same pixel point of the depth image (the transformation is necessary as the fields-of-view
of the cameras for RGB and for depth images are different). Thus, all the annotations for
the RGB images are the same for the depth images. Even though the depth images were
not used in the current research, this additional data can be valuable for later use or for
other researchers.

The InO-10-190 dataset is summarised in Tab. 3.6 and samples of the dataset are
depicted in Fig. 3.8. In Group A, every image contains only one object (except one image
without any objects). In Group B, every image contains multiple objects, but no class is
represented more than once. In Group C, spotlight illumination is applied from one side
to test the robustness of the models to illumination settings. In Group D, cluttered scenes
are recorded. In Group E, distractor objects (cubes, cylinders, triangular prisms, and a
3D-printed elephant) are placed in the scene. Finally, in Group F, in every picture, only
one class is presented, however, unlike in Group A, there are multiple instances of this
class in every image.

The group-wise class distributions are depicted in Fig. 3.9. As it can be seen, the

63

classes are relatively equally distributed in the groups. Even though in the mAP metric,
the mean of the classes is calculated, thus it is less influenced by class imbalance, it is
advantageous to create an equally distributed test dataset. Obviously, for training, which
can be sensitive to class imbalance, the synthetic data is generated with a random selection
of objects, thus eliminating any notable class imbalance. The dataset can be downloaded
from the project repository7.

Figure 3.8: Samples of our public and annotated InO-10-190 dataset (cropped version).

3.7 Results

In this section, we show the strengths of our S2R-ObjDet method, described in Section 3.3,
by applying it to the problem presented in Section 3.6. Moreover, we display the advantage
of our GCM in the performance evaluation, presented in Section 3.5. The training and
validation datasets are generated synthetic images by the S2R-ObjDet method8, while the
test dataset is the InO-10-190 dataset.

7https://git.sztaki.hu/emi/sim2real-object-detection
8In the case of one-shot transfer, in the training dataset there is one real image alongside the synthetic

images.

64

https://git.sztaki.hu/emi/sim2real-object-detection

Table 3.6: Summary of the InO-10-190 dataset.

ID #Img #Obj #Obj / #Img Illumination Distractors
A 53 52 0.98 Normal No
B 19 182 9.58 Normal No
C 20 144 7.20 Spotlight No
D 21 264 12.57 Normal No
E 22 135 6.14 Normal Yes
F 55 143 2.60 Normal No

SUM 190 920 4.84

A B C D E F SUM
0

20

40

60

80

100

Re
la

tiv
e

fre
qu

en
cy

 (%
)

Classes
L-bracket
U-bracket
angle_bracket
seat
pipe_clamp
handle
bonnet
body
ball
cable_shoe

Figure 3.9: Class distributions of the InO-10-190 dataset.

The naming convention for the models is as follows: TERM1 TERM2index, where TERM1

refers to zero-shot (ZST) or one-shot transfer (OST) options. In the case of ZST, the
model was trained only on synthetic images, while in the case of OST, one real image
was utilised with the synthetic images. The second part, TERM2 indicates the specific
configuration of the S2R-ObjDet method, BEST stands for the configuration that performed
the highest results. Finally, the lower index shows specific training seeds. For example
ZST BEST1 stands for the 1

th run of a zero-shot transfer training with the best S2R-ObjDet
configuration.

65

3.7.1 Zero-shot transfer (ZST)

The best-performing zero-shot transfer model (ZST BEST1) achieved 86.32% mAP50 on the
cropped test dataset. For data generation, a 2×2 grid (ngrid = 2) with fixed z positions and
a placement disturbance of ±10% of the grid spacing was set in the horizontal directions.
The simulation of gravity was enabled and the objects (including distractors and empty
places) were selected with equal probability. The objects had random textures with a
probability of 0.8 and a random colour with a probability of 0.2. The camera target
position was set to the centre of the grid with a fixed 45◦ FOV. The pitch of the camera
was randomised between −0.17 and 0.17 radians. The width and height of the images
are chosen randomly, independently of each other. Their values lie between 640 and 1300
pixels. For post-processing, multi-colour pepper-and-salt noise and Gaussian blur were
used with the probability of 1.0 and 0.5, respectively.9

With these parameters, 4000 images were generated for the training dataset, and 200
for the validation dataset. The evaluation of the model’s performance on the training
set was measured only on the first 200 images of the training set. Two examples of the
synthetic images are shown in Fig. 3.10

(a) Example 1 (b) Example 2

Figure 3.10: Two examples of synthetic images with the automatically generated annota-
tions. The bounding boxes are shown here for illustration purpose only.

The precision-recall curves of the three ZST BEST models (from the three training ses-

9The cutouts did not improve the performance, as shown in Section 3.8.5, thus they were not used here.

66

sions) are shown in Fig. 3.11a. As both the training and validation mAPs are close to 100%,
it can be stated that the solution of the classical machine learning problem is satisfactory.
Furthermore, observing the sim2real transfer, it can be seen that the models not only have
a relatively good performance on the test data, but also have little variance. Moreover, the
models perform relatively similarly on the original and on the cropped images which shows
the robustness of the method. The F1 score is depicted in Fig. 3.11b. It shows that while
the performance of the model on the cropped images is not affected by the τcon threshold,
the models work better with higher τcon values on the original images.

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on Train #1 mAP@50 = 100.0%

Valid #1 mAP@50 = 99.69%
Test cropped #1 mAP@50 = 86.32%
Test origin #1 mAP@50 = 85.38%
Train #2 mAP@50 = 99.99%
Valid #2 mAP@50 = 100.0%
Test cropped #2 mAP@50 = 82.01%
Test origin #2 mAP@50 = 81.31%
Train #3 mAP@50 = 99.83%
Valid #3 mAP@50 = 99.83%
Test cropped #3 mAP@50 = 81.29%
Test origin #3 mAP@50 = 82.79%

(a) The precision-recall curves of the ZST BEST

models.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Train #1 mAP@50 = 100.0%
Valid #1 mAP@50 = 99.69%
Test cropped #1 mAP@50 = 86.32%
Test origin #1 mAP@50 = 85.38%
Train #2 mAP@50 = 99.99%
Valid #2 mAP@50 = 100.0%
Test cropped #2 mAP@50 = 82.01%
Test origin #2 mAP@50 = 81.31%
Train #3 mAP@50 = 99.83%
Valid #3 mAP@50 = 99.83%
Test cropped #3 mAP@50 = 81.29%
Test origin #3 mAP@50 = 82.79%

(b) The F1 scores of the ZST BEST models.

Figure 3.11: Results of the ZST BEST models. Left. The precision-recall curves. Right.
The F1 scores. The train and valid scores overlap and are relatively close to the perfect
100% score.

The performance of the models on the different groups of the test dataset (described in
Tab. 3.6) is presented in Tab. 3.7. The performance is relatively stable across the different
scene types. Group D, containing the most crowded images, performs just slightly worse
than the others. In the case of the original images, group A has relatively low performance.
This is due to the fact that the model occasionally falsely identifies the brackets of the
camera holder frame (at the two sides of the camera holder frame which is displayed in
Fig. 3.5, marked with letter ‘F’) as L-brackets – this is not surprising as these parts look

67

Table 3.7: The mAP50 scores of the ZST BEST models in the different test groups.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
A 82.43 95.71 75.85 84.86 83.97 87.00 80.75 89.19
B 89.27 86.48 85.70 80.26 86.00 81.18 86.99 82.64
C 85.02 82.41 86.69 82.27 83.97 79.11 85.23 81.26
D 84.50 83.94 82.54 80.07 79.89 76.58 82.31 80.20
E 87.22 85.05 82.99 84.91 82.02 83.52 84.08 84.49
F 86.03 95.11 79.63 87.50 88.41 91.68 84.69 91.43

similar. As group A has the lowest number of objects, this phenomenon has the most
impact on results in this case. The cropped images, as shown in Fig. 3.5, do not contain
this part of the image.

Furthermore, the performance of the models for the different classes is worth investi-
gating. The data are presented in Tab. 3.8 and the average results are shown in Fig. 3.12.
Looking at the dataset of cropped images (green), it can be seen that 6 out of 10 classes
perform above 92%, one class is relatively close to them with 87.94% AP50, two classes
have worse results with 69.54% and 67.18% AP50, and one class – the bonnet – has signifi-
cantly worse performance with 30.72% AP50. Otherwise, the performance on the validation
dataset is close to 100% for all classes. The findings indicate that the performance loss is
not caused by the unsuccessful solution of the classical machine learning problem, but by
the existence of the reality gap. As most of the classes have relatively good APs, the bad
classes are outweighed by them in the mAP calculation.

In order to investigate the aforementioned problem, the class-wise precision-recall graph
of ZST BEST1 is shown in Fig. 3.13a. As it can be seen, the bonnet, the L-bracket, and the
seat are the worst classes consistently with Fig. 3.12.

The proposed generalised confusion matrix depicted in Fig. 3.13b (described in detail
in Section 3.5) is essential in finding the root causes of the weaknesses of the models. In
most cases, the objects are detected and classified to the correct class (diagonal). However,
several instances of L-bracket and seat are not detected (36 and 49 examples) and many
bonnets are classified as body objects (62 instances). The misclassification problem of the
bonnet object is not surprising considering the high level of similarity of the two objects,
as shown in Fig. 3.7. In general, this representation of the results not only confirms the
aforementioned assumptions of class performances but also shows the underlying reason
behind the lack of performance in their cases. It is worth considering why the bonnet-body

68

L-b
rac

ket

U-br
ack

et

an
gle

 br
ack

et sea
t

pip
e c

lam
p

ha
nd

le
bo

nn
et

bo
dy ba

ll

cab
le

sho
e

0

20

40

60

80

100

m
AP

@
0.

5
sc

or
e

(%
)

99
.9

3

99
.5

4

10
0.

0

99
.9

9

99
.9

8

98
.9

6

10
0.

0

10
0.

0

10
0.

0

10
0.

0

45
.3

3

76
.3

9

93
.0

3

83
.1

9

99
.6

5

96
.5

51
.5

8

94
.5

1

96
.5

1

94
.9

2

67
.1

8

92
.2

7

93
.1

4

69
.5

4

98
.3

9

97
.9

6

30
.7

2

87
.9

4 98
.4

96
.5

5

Valid
Test Origin
Test Cropped

Figure 3.12: The average mAP50 scores of the ZST BEST models in the different classes.

misclassification predominantly occurs in one direction (62 instances) and not the other
(only 2 instances). On one hand, it seems that the learned representation of the body
object is more inclusive than that of the bonnet. On the other hand, since both classes
were correctly classified in the synthetic validation set, the misclassification could be a
consequence of the sim2real transfer process – for example, the discrepancies between the
3D models and the real objects might significantly influence the knowledge transfer.

Finally, having presented the quantitative evaluation, two examples are given for qual-
itative evaluation as well. Fig. 3.14 shows an accurate and an inaccurate example, both
with τcon = 0.8. While the model could accurately find and classify all the parts even in
the presence of distractor objects in Fig. 3.14a, it fails to detect two instances of the seat
class and assigns the bonnet object to the body class in Fig. 3.14b.

3.7.2 One-shot transfer (OST)

Even though the best zero-shot transfer method achieved 86.32% mAP50, it had some
difficulties with 4 classes. With one-shot transfer, we could overcome these difficulties.
The parameters of data generation remained the same as it was described in the previous

69

Table 3.8: The mAP50 scores of the ZST BEST models for the different classes.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
1 41.45 63.15 45.26 71.85 49.28 66.54 45.33 67.18
2 76.34 91.66 77.51 91.58 75.32 93.56 76.39 92.27
3 94.14 93.14 91.56 93.17 93.39 93.11 93.03 93.14
4 84.96 77.71 71.88 60.16 92.72 70.74 83.19 69.54
5 99.82 95.72 99.37 99.49 99.76 99.97 99.65 98.39
6 95.77 98.21 94.82 97.53 98.90 98.14 96.50 97.96
7 71.77 54.26 52.39 22.01 30.57 15.90 51.58 30.72
8 96.51 92.13 93.77 92.23 93.26 79.46 94.51 87.94
9 97.13 99.03 94.27 96.89 98.14 99.27 96.51 98.40
10 95.87 98.19 92.32 95.22 96.57 96.24 94.92 96.55

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

L-bracket AP= 63.15 %
U-bracket AP= 91.66 %
angle_bracket AP= 93.14 %
seat AP= 77.71 %
pipe_clamp AP= 95.72 %
handle AP= 98.21 %
bonnet AP= 54.26 %
body AP= 92.13 %
ball AP= 99.03 %
cable_shoe AP= 98.19 %

(a) Class precision-recall curves. (b) Generalised confusion matrix.

Figure 3.13: Class specific results of the ZST BEST1 model. Left. The precision-recall
curves on the cropped images. Right. The GCM is evaluated on the cropped images with
τcon = 0.8.

70

(a) Accurate example (b) Inaccurate example

Figure 3.14: Qualitative evaluation. Left. An accurate example. Right. An inaccurate
prediction. Both are the results of the ZST BEST1 model with τcon = 0.8. The colour-coding
follows Fig. 3.9.

Table 3.9: Training datasets.

Model Synthetic images Real images
Zero-shot transfer (ZST) 4000 0
One-shot transfer (OST) 2000 1 (copied x2000)

zero-shot transfer example. The difference between the two approaches lies in the data
used to train the model, which is shown in Tab. 3.9.

The OST BEST3 model achieved 97.38% mAP50 on the cropped images, while the
OST BEST1 model had 97.04% mAP50 on the original images. These results are significantly
better than the results with zero-shot transfer. The precision-recall curves are shown in
Fig. 3.15a, and the F1 scores are shown in Fig. 3.15b. The mAP scores are close to optimal
and there is only an insignificant deviation between the different training sessions. The F1

score is also relatively high and flat in all cases, indicating that the models are not sensitive
to different τcon thresholds.

The performance on the different types of test images is presented in Tab. 3.10. In
general, the models work well, above 94% mAP50 in each case. The crowded scenes (Group

71

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0
pr

ec
isi

on Train #1 mAP@50 = 100.0%
Valid #1 mAP@50 = 99.77%
Test cropped #1 mAP@50 = 97.06%
Test origin #1 mAP@50 = 97.04%
Train #2 mAP@50 = 100.0%
Valid #2 mAP@50 = 99.76%
Test cropped #2 mAP@50 = 96.74%
Test origin #2 mAP@50 = 95.81%
Train #3 mAP@50 = 100.0%
Valid #3 mAP@50 = 99.62%
Test cropped #3 mAP@50 = 97.38%
Test origin #3 mAP@50 = 96.88%

(a) The precision-recall curves of the OST BEST

models.

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Train #1 mAP@50 = 100.0%
Valid #1 mAP@50 = 99.77%
Test cropped #1 mAP@50 = 97.06%
Test origin #1 mAP@50 = 97.04%
Train #2 mAP@50 = 100.0%
Valid #2 mAP@50 = 99.76%
Test cropped #2 mAP@50 = 96.74%
Test origin #2 mAP@50 = 95.81%
Train #3 mAP@50 = 100.0%
Valid #3 mAP@50 = 99.62%
Test cropped #3 mAP@50 = 97.38%
Test origin #3 mAP@50 = 96.88%

(b) The F1 scores of the OST BEST models.

Figure 3.15: Results of the OST BEST models. Left. The precision-recall curves. Right.
The F1 scores. The train and valid scores overlap and are relatively close to the perfect
100% score.

D) have slightly worse performance on average, but the difference is not significant.

Furthermore, the mAP scores of the different classes are presented in Tab. 3.11 and
shown in Fig. 3.16. All classes perform well, the worst-performing class with the origi-
nal images being the L-bracket with 92.62% mAP50. The precision-recall curves of the
OST BEST3 for the different classes are depicted in Fig. 3.17a. Compared to the zero-shot
approach, the curves are shifted towards the top-right corner which demonstrates better
performance.

The proposed GCM of the OST BEST3 with τcon = 0.8 is shown in Fig. 3.17b. Almost
all the values are in the diagonal, meaning that they are good predictions. However, some
instances of L-bracket, U-bracket, and cable shoe were not found by the model. The number
of false negative examples can be decreased by lowering the threshold at the expense of
possible false positive examples.

For qualitative evaluation, Fig. 3.18 shows an accurate prediction and an inaccurate
solution. In the latter case, the distractor objects resembling a body object in main char-
acteristics could mislead the model, implying that the model learnt an overly general rep-

72

Table 3.10: The mAP50 scores of the OST BEST models in the different test groups.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
A 97.29 97.52 97.76 97.29 98.00 97.76 97.68 97.52
B 98.12 96.45 97.29 97.02 97.92 97.49 97.78 96.99
C 96.39 96.19 94.18 96.40 96.21 97.18 95.59 96.59
D 96.23 95.94 94.97 94.42 95.60 95.64 95.60 95.33
E 96.70 98.94 93.77 97.47 93.34 97.91 94.60 98.11
F 98.99 99.37 98.83 99.20 99.76 99.52 99.19 99.36

Table 3.11: The mAP50 scores of OST BEST models for the different classes.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
1 93.70 93.94 90.24 92.70 93.92 94.92 92.62 93.85
2 94.75 92.45 92.94 93.21 95.28 94.15 94.32 93.27
3 93.19 94.85 92.95 93.25 92.61 94.22 92.92 94.11
4 96.76 96.93 96.74 97.11 96.65 96.70 96.72 96.91
5 99.34 99.54 99.19 99.84 98.38 99.88 98.97 99.75
6 99.51 99.57 99.17 99.71 99.40 99.53 99.36 99.60
7 98.30 98.81 98.51 98.81 97.69 98.77 98.17 98.80
8 98.50 98.40 96.94 98.00 98.23 98.45 97.89 98.28
9 99.52 98.43 97.74 98.47 99.96 99.53 99.07 98.81
10 96.83 97.73 93.70 96.26 96.73 97.60 95.75 97.20

73

L-b
rac

ket

U-br
ack

et

an
gle

 br
ack

et sea
t

pip
e c

lam
p

ha
nd

le
bo

nn
et

bo
dy ba

ll

cab
le

sho
e

0

20

40

60

80

100

m
AP

@
0.

5
sc

or
e

(%
)

99
.6

5

10
0.

0

98
.2

8

10
0.

0

99
.2

5

10
0.

0

10
0.

0

10
0.

0

10
0.

0

10
0.

0

92
.6

2

94
.3

2

92
.9

2

96
.7

2

98
.9

7

99
.3

6

98
.1

7

97
.8

9

99
.0

7

95
.7

5

93
.8

5

93
.2

7

94
.1

1

96
.9

1

99
.7

5

99
.6

98
.8

98
.2

8

98
.8

1

97
.2

Valid
Test Origin
Test Cropped

Figure 3.16: The average mAP50 scores of the OST BEST models in the different classes.

resentation of the object. As the quantitative results show, the vast majority of examples
is accurate.

3.8 Ablation study

In this section, an ablation study is presented, focusing on the different elements of the
domain randomization methods, the training data size, and the object detection model.

3.8.1 Seed

In general, the initial random seed of stochastic algorithms can significantly influence their
performance. This phenomenon is unpleasant as it makes the algorithms unpredictable.
We aim to measure the influence of the seed of our domain randomization method in
the case of the ZST BEST models. It is important to note that we do not use the same
random seed for the training and for the domain randomization method. Tab. 3.12 shows
different seeds (with two equal seeds for reference), with 3 independent training sessions

74

0.0 0.2 0.4 0.6 0.8 1.0
recall

0.0

0.2

0.4

0.6

0.8

1.0

pr
ec

isi
on

L-bracket AP= 94.92 %
U-bracket AP= 94.15 %
angle_bracket AP= 94.22 %
seat AP= 96.7 %
pipe_clamp AP= 99.88 %
handle AP= 99.53 %
bonnet AP= 98.77 %
body AP= 98.45 %
ball AP= 99.53 %
cable_shoe AP= 97.6 %

(a) Precision-recall curves. (b) Generalised confusion matrix.

Figure 3.17: Class specific results of the OST BEST3 model. Left. The precision-recall
curves on the cropped images. Right. The GCM on the cropped images with τcon = 0.8.

each. In these experiments, we showed that the magnitude of the deviation of the results
due to the stochastic training process of the neural network and due to the different seeds
of the randomised data generation methods are comparable. Thus, our randomised data
generation method is not less robust to a given seed than the stochastic training method
itself.

3.8.2 Texture and post-processing

Two important factors in our domain randomization method are the random textures of
the objects and the post-processing method. We have generated datasets without these
factors. The results are summarised in Tab. 3.13 and the results on the original images are
shown in Fig. 3.19. Both the added texture and the post-processing methods contribute
significantly to the performance. Without the added texture, the performance drops to
63.50% and 74.71% mAP50 in the case of the original and the cropped images. Without
post-processing, the performance is only 55.87% and 60.42% mAP50, respectively. Finally,
the performance decreases drastically achieving 10.83% and 13.81% mAP50 without the
two methods. These experiments show how essential these types of domain randomization

75

(a) Accurate example (b) Inaccurate example

Figure 3.18: Qualitative evaluation. Left. An accurate example. Right. An inaccurate
prediction. Both are the results of the OST BEST3 model with τcon = 0.8. The colour-coding
follows Fig. 3.9.

methods are. As the average performance of the model on the validation dataset is 99.84%
mAP50, according to Eq. (3.8), the reality gap shrinks, in case of the original images, on
average from 89.01% (-TPP) to 16.68% mAP50 (BEST).

3.8.3 Data size

The size of the training dataset is a key attribute of any machine learning problem. In
general, the more data are used in the training, the better its distribution will match the

Table 3.12: The mAP50 scores of ZST BEST models with different seeds.

Train #1 Train #2 Train #3 AVG
Seed Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
80725 79.71 78.67 81.93 84.55 78.30 80.69 79.98 81.30
80725 82.29 78.31 80.99 84.31 79.60 79.23 80.96 80.62
53418 83.57 80.69 78.13 80.95 74.74 76.92 78.81 79.52
16505 85.38 86.32 81.31 82.01 82.79 81.29 83.16 83.21

76

BEST -T -PP -TPP
Models

0

10

20

30

40

50

60

70

80

m
AP

@
0.

5
sc

or
e

(%
)

85
.3

8

62
.8

3

61
.4

0

10
.8

9

81
.3

1

61
.0

8

50
.5

8

12
.5

1

82
.7

9

66
.5

9

55
.6

3

 9
.0

8

Training num.
#1
#2
#3

Figure 3.19: Results of the ablation study on the original images (ZST models). Model
without added textures (-T), without post-processing methods (-PP), and without both
(-TPP).

real probability distribution. Nevertheless, this phenomenon does not necessarily apply to
the case of knowledge transfer. The results of the performance of the ZST BEST models for
different training data sizes are presented in Tab. 3.14. It is important to note that for the
case of 8000 images, the training time was doubled from 5000 to 10000 iterations. Even
though increasing the training data size from 1000 to 4000 allows the model to gain notable
performance, doubling the data size from 4000 to 8000 only causes marginal improvement.

3.8.4 Gravity, positional disturbance, and bounding-box calcu-
lation

In this part of the ablation study, the effect of simulated gravity, the effect of random
disturbance around the grid positions, and the effect of replacing the all-point bounding
box calculation with the 8-point bounding box calculation (described in Section 3.3.2) are
measured. The findings are summarised in Tab. 3.15. All of the aforementioned factors
have a relevant effect on the performance. In the case of cropped images, on average, gravity
brings 11.01% mAP50, the randomness of object positions contributes 14.22% mAP50, and
the tight all-point bounding box calculation method is responsible for a 41.76% mAP50

77

Table 3.13: The mAP50 scores of different ZST models. -T: without texture, -PP: without
post processing, -TPP: without post processing and texture.

Train #1 Train #2 Train #3 AVG
Desc. Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
BEST 85.38 86.32 81.31 82.01 82.79 81.29 83.16 83.21
-T 62.83 73.26 61.08 74.07 66.59 76.80 63.50 74.71
-PP 61.40 63.14 50.58 60.62 55.63 57.51 55.87 60.42
-TPP 10.89 9.48 12.51 13.75 9.08 18.21 10.83 13.81

Table 3.14: The mAP50 scores of ZST BEST models with different data sizes.

Train #1 Train #2 Train #3 AVG
Size Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
1000 70.07 72.12 77.94 76.60 75.37 78.12 74.46 75.61
4000 85.38 86.32 81.31 82.01 82.79 81.29 83.16 83.21
8000 84.56 85.64 86.95 83.68 81.96 81.46 84.49 83.59

performance gain. In the case of bounding box calculation, the performance drops with
the less tight BBs, implying two possible reasons. Firstly, the ground-truth BBs are tight,
thus computing the IoU50 with less tight BBs may result in many discarded matches.
Secondly, in the crowded images, the BBs are too extensive, thus, they could significantly
overlap each other which may confuse the model.

Table 3.15: The mAP50 scores of ZST models without different factors. -G: no gravity, -R:
no randomness in grid positions and no gravity, 8P: 8-point bounding box calculation.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
BEST 85.38 86.32 81.31 82.01 82.79 81.29 83.16 83.21
-G 61.12 71.47 65.86 69.89 68.76 75.25 65.25 72.20
-R 49.12 63.07 62.00 74.38 48.18 69.53 53.10 68.99
8P 31.09 40.66 28.98 37.77 39.19 45.93 33.09 41.45

78

Table 3.16: The mAP50 scores of ZST models with different cutouts at the post-processing
method.

Train #1 Train #2 Train #3 AVG
ID Orig. Crop. Orig. Crop. Orig. Crop. Orig. Crop.
BEST 85.38 86.32 81.31 82.01 82.79 81.29 83.16 83.21
CUT1 68.24 77.18 66.93 76.77 71.85 83.53 69.01 79.16
CUT2 82.12 78.97 78.56 83.33 72.99 69.79 77.89 77.36
CUT3 58.25 75.13 56.39 74.45 58.97 76.46 57.87 75.35
CUT4 76.00 69.76 70.17 78.62 68.26 73.60 71.48 73.99
CUT5 70.32 74.74 75.50 78.74 74.59 74.91 73.47 76.13
CUT6 78.53 76.86 74.83 79.77 79.70 82.27 77.69 79.63
CUT7 82.25 80.26 70.22 69.95 74.51 77.48 75.66 75.90
CUT8 75.64 75.63 75.58 80.46 80.96 84.06 77.39 80.05

3.8.5 Cutouts

Some additional experiments were conducted with different types of cutouts at the post-
processing phase of data generation presented in Tab. 3.16. In these experiments, 4 types
of cutouts were considered: rectangles, partly transparent rectangles, circles, and lines.
The number of cutouts and the bounds of the randomised sizes of the cutouts varied over
the experiments. The results show that none of the cases could achieve a better perfor-
mance than the ZST BEST model which does not have this type of domain randomization.
Nevertheless, a more thorough evaluation of the effect of different cutouts can be subject
to further research.

3.8.6 Faster R-CNN

To test the performance of the data generation process in the case of a two-stage object
detection model, we trained the R101-FPN version of the Faster R-CNN [120] model using
the Detectron2 [227] framework and Pytorch [228]. This model uses the ResNet-101 [131]
model with the Feature Pyramid Network [229] backbone. The results are shown in Ta-
ble. 3.17. Even though the performance of the model falls behind YOLOv4, it could be in-
creased with a more exhaustive hyperparameter search. Moreover, the Darknet framework
uses extra data augmentation for training which we did not reproduce for the Detectron2
framework. It is important to note that here, too, considerable performance improvement
is achieved by having one real image for training.

79

Table 3.17: The mAP50 scores of R101-FPN Faster R-CNN model.

Zero-shot transfer One-shot transfer
valid test valid test

Train #1 85.90 49.78 97.18 71.97
Train #2 85.78 66.73 96.495 67.70
Train #3 86.38 55.41 96.78 70.73

AVG 86.02 57.31 96.82 70.13

The training of the Faster R-CNN model was approximately 4 times faster than in the
case of YOLOv4. On the other hand, inference time was around 10 times slower with 2
FPS. In conclusion, YOLOv4 outperformed the Faster R-CNN approach in performance
and in inference time which are the two most relevant factors.

3.9 Robotic application

Object detection can be utilised in many ways. Examples are robotic grasping or pick-and-
place applications where the robot needs to detect different workpieces and grasp them or
move them to specific locations.

In this section, a real-world robotic implementation of our method is presented. The
application can serve as proof of concept built upon our previous work [5], where we
proposed a 5C model-based [230] system architecture for visual-servo-guided cyber-physical
robotic assembly cells. Relying on the object detection model, the parameters of grasping
(micro plan) can be computed.

The robotic system consists of a 6 DoF collaborative robot arm equipped with a digital
depth camera, a force sensor, and a two-finger gripper. The task of the robot is to detect
scattered workpieces (centre points and bounding box information), as well as predict
grasping poses. The sensors and actuators of the robot and the sim2real computer vision
module are connected in a robot control framework based on ROS [231]. The setup is
depicted in Fig. 3.20, while the software components of the robot control framework are
shown in Fig. 3.21

For robotic applications, every component of the system must work reliably in real
time. In order to evaluate the sim2real computer vision module in a new case, three new
industrial parts were used, as depicted in Fig. 3.20. The data generation and training
process went without any problems. Thus, within 13 hours, the new model was ready

80

to use. As a qualitative evaluation, the robot was programmed to follow a path over the
workpieces while streaming the camera data. On a GeForce RTX 3060 GPU, our computer
vision model ran with 20 FPS and constantly localised and classified the objects perfectly
with more than 98% confidence most of the time, even in significantly different illumination
settings and in the presence of distractor objects.

For grasping the workpieces, the grasping pose needs to be estimated and transformed
into the robot coordinate system. These problems are addressed, in detail, in the following
chapter. Here, the method of principal component analysis was applied for a simplified
version of grasp pose estimation and a standard camera calibration method for the trans-
formation.

This use case was presented in an exhibition10 and the implementation of the ROS-based
robot control system is available at the control module’s git repository11.

Figure 3.20: The setup of the robotic application.

3.10 Conclusion

In this chapter, our sim2real domain randomization (S2R-ObjDet) method for object de-
tection was presented alongside our generalised confusion matrix (GCM) for performance
evaluation and our InO-10-190 dataset of real images.

10https://youtu.be/6PhaXW1m9Xw
11https://git.sztaki.hu/emi/robot_control_framework

81

https://youtu.be/6PhaXW1m9Xw
https://git.sztaki.hu/emi/robot_control_framework

UR Robot Driver Robotiq Gripper
Driver

Realsense Camera
Driver

Computer Vision
Module

Control Module
Grasp Paramteres

Image

Robot
pose

Gripper
position

Optoforce
sensor driver

Force and torque data

Figure 3.21: Information flow in the robotic application. The computer vision module,
which is the main topic of this chapter, is highlighted in orange. In this application, the
force sensor was not used (marked with the dashed line). The following software resources
were used: [232]–[236].

For industrial usability, our S2R-ObjDet method is capable of detecting different classes
and also differentiating among similar classes. Additionally, it works in real time, and the
data generation takes less than 0.5s per image. According to our best knowledge, this is
the first work thus far that mutually satisfies these constraints in this domain.

As recent works on transfer learning did not concentrate on object similarity (and
diversity), we created the InO-10-190 dataset with 190 real annotated images of 920 objects
of 10 classes of industrial workpieces. The dataset is publicly available and can serve as a
benchmark for industrial object detection models.

Furthermore, we introduced the generalised confusion matrix (GCM) which is capa-
ble of quantifying misclassification, false positives, and false negatives in object detection
problems. It has proven to be essential for finding the root cause of performance loss in
the sim2real transfer.

The results presented in the chapter validate the strengths of our approach. We achieved
86.32% mAP50 in the case of zero-shot transfer, while with one-shot transfer, the best model
scored 97.38% mAP50 on the test set. With these experiments, we also demonstrated how
to diminish the performance loss caused by similar classes by introducing only one image
from the target domain.

In a thorough ablation study, we showed that adding random texture and our post-
processing domain randomization methods are crucial parts of the process. We also found
that simulating gravity, random initial placement, and the all-point bounding box calcu-

82

lating method contribute significantly to the performance.

As a proof of concept, we showed that our model works reliably and in real time in a
robotic pick-and-place application.

Both the sim2real data generation and training module, and the robot control frame-
work can be used as a freely available, out-of-the-box solution to industrial problems.

Based on the findings presented in this chapter, our theses connected to the first research
question regarding sim2real knowledge transfer for object detection are as follows:

Thesis I: The synthetic images generated by our sim2real domain ran-
domization method (S2R-ObjDet) enable object detection models to
learn general representations of the objects, thereby bridging the gap
between simulation and real-world environments.

We propose S2R-ObjDet, a domain-randomization-based sim2real syn-
thetic data generation method for object detection. The 3D models of
the given objects are loaded in the simulator, each with a random tex-
ture or monochromatic colour. Both the number and types of objects are
randomised. Simulating gravitational force, the objects are dropped to a
plane where they end up in one of their stable positions. The camera ex-
trinsic and intrinsic parameters are set randomly with some constraints
to ensure that the given objects are in the field of view. After an image is
rendered, a post-processing method is applied to it involving multi-colour
pepper-and-salt noise, gaussian blur, and optionally rectangular, circu-
lar, and line cutouts. The ground truth annotations of each object are
automatically computed based on all points of the objects instead of the
8-points of the axis-aligned bounding boxes of the objects. This process
is repeated until the required number of images for the training dataset
is generated. S2R-ObjDet is capable of shrinking the reality gap between
simulation and the real world to a satisfactory level, achieving 86.32%
and 97.38% mAP50 scores respectively in the case of zero-shot and one-
shot transfers, on our publicly available manually annotated InO-10-190
dataset, containing 190 real images of 920 object instances of 10 classes.
The class selection was simultaneously based on different and similar ob-
jects in order to test the robustness of the model in terms of detecting
different classes and differentiating between similar objects. Our solu-
tion fits industrial needs as the data generation process requires less than
0.5s per image enabling a fast training process. The training pipeline is
presented in Fig. 3.1. This thesis is associated with [1].

83

Thesis II: In object detection, misclassifications, false positives, and
false negatives – factors not captured by traditional metrics – can be ef-
fectively quantified and evaluated using our generalised confusion matrix
(GCM).

Our novel generalised confusion matrix (GCM) – depicted in Fig. 3.4 – is
an adaptation of the classical confusion matrix to object detection. It ad-
dresses the limitations of the traditional precision-recall-based mAP and
F1 scores. Using the GCM, errors from misclassification, false positives,
and false negatives can be effectively quantified and evaluated. Compared
to the traditional confusion matrix D ∈ NC×C, where C ∈ N is the num-
ber of the classes, in our GCM Dgen ∈ NC+1×C+1, one extra row and
one extra column are added to the false positives and the false negatives
cases. The correct detections are in the diagonal, Dgen

i,i , as in the case of
the standard confusion matrix. Dgen

C+1,C+1
.
= 0. This thesis is associated

with [1].

84

Chapter 4
Sim2real grasp pose estimation

Contents
4.1 Introduction . 86

4.2 Problem statement . 88

4.3 Related works . 89

4.4 Approach . 90

4.4.1 Object detection with S2R-ObjDet 90

4.4.2 ROI cropping . 91

4.4.3 Orientation estimation with S2R-PosEst 91

4.4.4 Pattern matching (optional) . 93

4.5 Robot control architecture . 94

4.6 Results . 96

4.6.1 Setting of the robotic experiments 96

4.6.2 Object detection . 97

4.6.3 Orientation estimation . 97

4.6.4 Robotic grasping . 98

4.7 Conclusion . 99

85

In Chapter 3, our sim2real domain randomization method was presented, focusing on
object detection. Nevertheless, in robotic manipulation tasks, oftentimes, the poses of the
objects need to be estimated as well. Even though the recent DL models show promis-
ing results, they require an immense dataset for training. In this chapter, we propose
two vision-based, multi-object grasp pose estimation models (MOGPE) – the real-time
MOGPE-RT and the high-precision MOGPE-HP. Furthermore, to diminish the reality gap
and overcome the data shortage, our sim2real domain randomization method, presented
in Chapter 3, is augmented to pose estimation (S2R-PosEst). Our methods yielded an
80% and a 96.67% success rate in a real-world robotic pick-and-place experiment, with the
MOGPE-RT and the MOGPE-HP model respectively, using only limited real-world data.
Our framework provides an industrial tool for fast data generation and model training, re-
quiring minimal data from the target distribution. For a short presentation and additional
materials, we refer the reader to the project page: www.danielhorvath.eu/mogpe.

4.1 Introduction

Building on the challenges posed by data-hungry DL models and their potential solutions
discussed in Section 3.1 within the context of object detection, this Chapter shifts focus
to pose estimation in the domain of robotic grasping

Robotic grasping is an unsolved problem and a critical challenge of adaptive robotics in
which the model not only needs to identify and locate the different parts but also estimate
its orientation to compute a viable grasp position. The contributions of this chapter are
as follows:

• The proposed multi-object grasp pose estimation methods (MOGPE) – the real-time
MOGPE-RT and the high-precision MOGPE-HP models – depicted in Fig. 4.1.

• The synthetic data generation process with sim2real domain randomization for grasp
pose estimation (S2R-PosEst).

• Our freely available implementation of the S2R-PosEst method1 and the robot control
framework2.

Our results:

1https://git.sztaki.hu/emi/grasping-pose-estimation
2https://git.sztaki.hu/emi/robot_control_framework

86

http://www.danielhorvath.eu/mogpe/
https://git.sztaki.hu/emi/grasping-pose-estimation
https://git.sztaki.hu/emi/robot_control_framework

Figure 4.1: Top. Illustration of our S2R-ObjDet and S2R-PosEst methods. Bottom.
The flowchart diagram of our multi-object grasp pose estimation (MOGPE) methods.

87

• In our case study, the object detection model with S2R-ObjDet yielded a 98.78%
mAP50 score, while the orientation estimation models with S2R-PosEst achieved a
97.04% success rate on average.

• The (MOGPE-RT) model runs in real time. The object detection stage works at 20
FPS while the orientation estimation stage runs at 100 FPS.

• In a real-world experiment of robotic grasping, the MOGPE-RT model achieved an
80% while the MOGPE-HP model accomplished a 96.67% success rate. These results
serve as a proof-of-concept of our approach.

4.2 Problem statement

In this section, the problem is briefly presented alongside our approach. For a more thor-
ough overview of the field, the reader is referred to survey articles such as [237].

The problem is defined as a 3.5 DoF pick-and-place robot manipulation task. In
Section 2.1.5, the output of an axis-aligned object detection model is described as
y = {(bi, cclassi , pconi) | i = 1, 2, . . . , N}, where bi = [xi, yi, wi, hi] represents the AABB,
cclassi is the class label, and pconi is the confidence score of the ith detection, while N ∈ N is
the number of detected objects. One approach to introduce the orientation to object de-
tection is to replace the AABBs to OBBs, however – for simplicity and transferability – we
chose to keep the AABBs and augmented them with orientation angles. Mathematically,
y = {(bi, cclassi , θi) | i = 1, 2, . . . , N}, where θi ∈ R is the orientation angle of the ith

detection3.

In our case, the characteristics of the problem are as follows. The position of the plane
where the objects are placed must be known. The objects are recognised only from one
of their stable positions. The parts are separated and all object classes are present at the
training. Lastly, 3D models of the objects are available4.

The given model needs to identify and locate all the different workpieces and then
estimate the orientations of them. Additional challenges arise from the following circum-
stances. The environment is not controlled (no special illumination), and the background
is not simplified (no monochromatic background). The model has access to only one RGB

3It is important to note that with this formulation, the confidence scores are already filtered. For more
detail, see Section 4.4.

4In our solution, the 3D models of the objects are not used for 3D pattern matching but for synthetic
data generation.

88

image, thus the 3D reconstruction of the scene is not possible. The grasp must be per-
formed with a two-finger gripper and every object has only one grasp position.

Our solution is a two-stage, data-driven (supervised learning) method. 3D models of
the objects are only utilised for the synthetic training dataset generation. As our aim
is industrial usability, the assumption is that the availability of real-world data is lim-
ited. The majority of the training dataset is synthetic, generated by our sim2real domain
randomization methods.

4.3 Related works

The related works focus mostly on two aspects of the robotic grasping challenge:

1. What is the optimal model to solve the problem?

2. How to generate training data and then transfer the knowledge to the real world?

Mahler et al. [52] introduced Dex-Net 4.0. They use a simulator to create a training
dataset for their Grasp Quality Convolutional Neural Network. Even though this approach
is relatively strong in bin-picking tasks, it is less optimal for pick-and-place operations with
predefined grasping positions.

Tobin et al. [50] propose an autoregressive grasp planning method that gives a probabil-
ity distribution over possible grasps. They used the YCB [221] dataset and in a real-world
scenario, they achieved an 80% success rate.

Pashevich et al. [184] trained a model to learn manipulation policies in a simulation
using depth images and sim2real transfer. They achieved 1.09±0.73 cm positional error in
the real world. Furthermore, in the tasks of cube picking, cube stacking, and cube placing
tasks, they yielded 19, 18, and 15 successful attempts out of 20.

Zhang et al. [211]. presented how to efficiently transfer visuo-motor policies from sim-
ulation to real-world. In their case study, a velocity-controlled 7 DoF robot arm needed
to reach a blue cuboid object in a table-top scenario. They achieved a 97.8% success rate
and 1.8 cm control accuracy.

Zhang et al. [238] introduced a two-stage ROI-based robotic grasp detection model fo-
cusing object overlapping scenes. They yielded 92.5% and 83.8% success rate, respectively
in single-object and multi-object scenes. Nevertheless, using real images, they did not
focus on sim2real knowledge transfer.

89

It is challenging to compare the works above as many aspects of the problem are differ-
ent. However, it can be noted that an 80% success rate is considered a good performance
in the literature.

It is important to mention that, according to our best knowledge, even though there are
existing industrial solutions for some types of robotic grasping, they cannot perform the
task described in Section 4.2. In general, these tools either detect a tag on a palette and
then move to predefined positions on the palette, exploit the controlled environment (such
as special background or lightning conditions), are only capable of detecting one class of
objects, or use many real-world images. For the aforementioned reasons, the comparison
of such solutions is not feasible.

4.4 Approach

In our multi-object grasp pose estimation (MOGPE) methods, the problem is divided into
two stages, depicted in Fig. 4.1. The first stage is object detection while the second stage
is class-specific orientation estimations. As the plane coordinates and the 3D models of
the objects are known, with the centre points and the orientations, the grasping position
can be calculated. The learning-based models were trained primarily on synthetic data,
generated by our sim2real methods.

The two main building blocks of the MOGPE models, the object detection model
with S2R-ObjDet, and the orientation estimation model with S2R-PosEst are presented in
Section 4.4.1 and 4.4.3. In Section 4.4.2, the region of interest (ROI) cropping algorithm is
presented which connects the object detection and the orientation estimation models. The
aforementioned blocks constitute the MOGPE-RT model. The MOGPE-HP model is an
extension of the MOGPE-RT model with a rule-based pattern matching step, described in
Section 4.4.4. The implementation is available at our git repository5.

4.4.1 Object detection with S2R-ObjDet

In this section, the essentials of the S2R-ObjDet for MOGPE is presented. However, S2R-
ObjDet is introduced and detailed in Section 3.3, thus for further details, we refer the
reader to Chapter 3.

Depicted in Fig. 4.1, the object detection module is the first stage of our MOGPE
method. Its input is the image itself and its output is described as y = {(bi, cclassi , pconi) |

5https://git.sztaki.hu/emi/grasping-pose-estimation

90

https://git.sztaki.hu/emi/grasping-pose-estimation

i = 1, 2, . . . , N}. The detections with pconi < τcon are filtered out. For further details on
the problem formulation, the confidence score, and the confidence threshold, we refer the
reader to Section 2.1.5.

For the object detection convolutional neural network, YOLOv4 [34] was chosen as,
at the time of the research, it had the optimal accuracy-speed trade-off compared to the
state-of-the-art. The generation of the synthetic training dataset and the training process
of S2R-ObjDet are described in Section 3.3. Nevertheless, the detected objects are different
compared to the InO-10-190 dataset, presented in Section 3.7, thus our results presented
in this chapter also serve as further validation to our S2R-ObjDet method.

For industrial usability, it is important to note that the data generation lasts around
0.25 - 0.5s per image, while the training takes 12h on a GeForce RTX 2080 Ti GPU. The
model prediction time is above 20 FPS on a GeForce RTX 3060 GPU.

4.4.2 ROI cropping

Between the object detection and the orientation estimation models, there is a rule-based
ROI cropping algorithm that cuts out the specific ROIs of the objects from the input image
according to the bounding box information. Then, it transforms them to the appropriate
size while keeping the orientation of the objects (one object per image) and forwards them
to the specific CNN of the second stage, depicted in Fig. 4.1 (after the object detection
module) and detailed in Fig. 4.2. Assuming that there are C ∈ Z+ classes, an object that
is detected on the image can be sent to C different CNNs.

As the next stage must estimate the orientation of the objects, it is crucial that the
image transformation does not change the orientation. For this reason, the image is padded
with zeros to a square and then resized to the expected input size of the neural network.
In our case, it is 300x300 pixels.

4.4.3 Orientation estimation with S2R-PosEst

The second stage of the model is the orientation estimation which contains C CNNs (one
for each class)6. Each of them takes a 300x300x3 image as input and outputs the sine and
cosine representations of the θ ∈ [−π, π] orientation. Learning the sine and cosine values,
rather than directly learning the angles, was chosen because these trigonometric functions

6The CNN architecture was chosen as it is easier to implement and train than ViT models.

91

Input Image
with Bounding Boxes

Cropped
ROIs

Padded
ROIs

Resized
ROIs

Figure 4.2: The data flow of the ROI cropping method.

are continuousan essential property for optimizing the loss function in regression problems.
Having computed these values, the orientation can be calculated using the atan2 function.

The architecture of the CNNs is shown in Fig.4.3. In the feature extractor, there are
4 convolutional layers with ReLU activation functions and each of them is followed by a
MaxPooling layer. To compute the outputs, there are 4 fully connected layers in the head
of the network. The models are trained from scratch, independently from each other, on
class-specific synthetic and real examples.

The synthetic data were generated in PyBullet. The 3D model of the object is placed in
the simulator and rotated around the z-axis (perpendicular to the plane where the object
is placed) while random textures are added to the plane and to the object as well. All
together, there are nrot rotations. Mathematically, nrot = ⌊ 2·π

βres
⌋, where nrot ∈ N is the

number of rotation and βres ∈ R is the resolution in radian. For each bit of rotation, an
image is taken and the label is automatically generated with it. Some examples can be
seen in Fig. 4.4. The data generation lasts around 0.25 - 0.5s per image, while the training,
implemented in PyTorch, takes 2.5h per class on a GeForce RTX 2080 Ti GPU. The model
prediction time is at 100 FPS on a GeForce RTX 3060 GPU.

92

In
pu

t I
m

ag
e:

 3
 c

ha
nn

el
s

C
on

v1
: K

: 5
x5

, F
M

: 3
2,

 A
: R

eL
U

M
ax

Po
ol

in
g:

 2
x2

C
on

v2
: K

: 5
x5

, F
M

: 6
4,

 A
: R

eL
U

C
on

v3
: K

: 3
x3

, F
M

: 1
28

, A
: R

eL
U

C
on

v4
: K

: 3
x3

, F
M

: 2
56

, A
: R

eL
U

FC
1:

 2
04

8,
 A

: R
eL

U

FC
2:

 1
02

4,
 A

: R
eL

U

FC
3:

 2
56

, A
: R

eL
U

FC
4:

 2

Convolutional Layers (Feature Extractor) Fully Connected
Layers (Head)

M
ax

Po
ol

in
g:

 2
x2

M
ax

Po
ol

in
g:

 2
x2

M
ax

Po
ol

in
g:

 2
x2

Figure 4.3: The proposed CNN architecture for orientation estimation. Abbreviations are
Conv: convolutional layer, FC: fully connected layer K: kernel size, FM: number of feature
maps, A: activation function.

4.4.4 Pattern matching (optional)

Computing the θ orientations for all the objects is the last step of the real-time MOGPE-
RT model. To achieve higher precision, we also propose the high-precision MOGPE-HP
model, which incorporates a rule-based pattern-matching algorithm executed following
the orientation estimation, albeit at the expense of real-time performance. The pattern
matching is performed locally, in the vicinity of the estimated orientation. With this
addition, the model achieves higher precision at the cost of the extra computation.

The pattern-matching algorithm compares the image of the object with a set of pre-
computed rotated kernel images. For one class, one real kernel image is rotated 359 times
making 360 rotated kernel images7.

Comparing two images takes around 13 ms, thus if the search is restricted for ± 10
degrees with a 1-degree resolution, it takes 0.29 seconds (including the angle zero). It is
important to note that performing it in the whole range (without the orientation estimation
by the CNN) would take 4.68 seconds. Moreover, this process must be performed for all
detected objects. If parallel processing is not achievable, it can result in a substantial

7If the precision needs to be higher than 1 degree, this procedure can be done on a finer scale.

93

Class: Base Class: Arm Class: Gripper

O
rie

nt
at

io
n:

 1
80

°
O

rie
nt

at
io

n:
 1

35
°

O
rie

nt
at

io
n:

 9
0°

Figure 4.4: Examples of the generated synthetic training dataset.

increase in execution time.

It is important to note that the pattern-matching algorithm needs a good initializa-
tion, provided by the orientation estimation CNN. Otherwise, it frequently finds wrong
orientations, especially in symmetric objects.

4.5 Robot control architecture

In this section, the robot control architecture is presented which shows how our computer
vision models can be utilised in real-world robotic applications.

The robot control architecture is based on ROS (robot operating system) and is depicted
in Fig. 4.5. The camera driver node publishes the images that are first read by the object
detection node which then publishes the bounding box information. Based on these,
the orientation estimation node predicts the orientation of the visible objects and
sends this information to the pattern matching node which returns with the corrected

94

orientation estimate when the get orientation service is called. In the case of the
MOGPE-RT model, the get orientation service returns with the original value of
the orientation estimation node. The camera frame broadcaster node publishes the
transformation between the camera frame and the end effector. With this information, the
pixel converter node transforms pixel coordinates to the word frame when the convert
point service is called. For motion planning, the MoveIt framework [239] was used. Our
implementation is available at the project’s git repository8

The camera is calibrated using the VISP library [240]. By taking some pictures of
a known pattern (a chessboard in our case), the transformation between the robot’s end
effector frame and the camera frame is calculated. Since the position of the plane where
the objects are placed and the 3D models of the objects are known, the inverse perspective
projection equations can be used to transform object positions from the image frame to the
camera frame, then transform them to the world frame using the transformation matrix
obtained from the calibration.

Bounding
Boxes

Estimated Orientation

Get Orientation
(MOGPE RT)

Get Orientation
(MOGPE HP)

Bounding
Boxes

RGB Image

Grasping
Demo

Camera
Driver

Camera Frame
Broadcaster

Pixel
Converter

Object
Detection

Orientation
Estimation

Pattern
Matching

Panda
Robot MoveIt

Robot State

Franka
Control

RGB Image
RGB Image

Camera to EE
Transform

Camera

Convert Point

RGB Image
RGB Image

Convert Point

Camera to EE
Transform

Camera
Driver

Camera Frame
Broadcaster

Object
Detection

Figure 4.5: The robot control architecture. With blue colour, the version of the MOGPE-
RT model, while with orange colour, the version of the MOGPE-HP model.

8https://git.sztaki.hu/emi/robot_control_framework

95

https://git.sztaki.hu/emi/robot_control_framework

4.6 Results

In this section, the evaluation of our approach is presented. First, the settings of the robotic
manipulation problem are described in Section 4.6.1. Then, the results of the object de-
tection and the orientation estimation models are demonstrated in Section 4.6.2 and 4.6.3.
Finally, the entire pipeline is validated in a real-world robotic grasping experiment, pre-
sented in Section 4.6.4.

4.6.1 Setting of the robotic experiments

For this robotic case study, three industrial parts were selected that are themselves parts
of a simple robot arm, shown in Fig. 4.6. Synthetic samples of the parts are depicted in
Fig. 4.4.

Initially, the parts are randomly placed in the starting area. The task of the robot is to
pick and place the parts one by one from the starting area to the designated target positions
using its two-finger gripper. Neither special illumination was applied nor monochromatic
background.

Figure 4.6: Experimental setup.

96

Table 4.1: The mAP50 scores of the object detection model.

Dataset
Train Valid Test

Training #1 100% 100% 98.85%
Training #2 100% 100% 98.81%
Training #3 100% 99.81% 98.85%
Training #4 100% 100% 98.81%
Training #5 97.07% 95.26% 98.56%

AVG 99.41% 99.01% 98.78%
STD 1.3103% 2.1001% 0.1224%

4.6.2 Object detection

To train the model9, 2000 synthetic images were generated using S2R-ObjDet, supple-
mented with a set of real images. The real images were multiplied to match the number
of synthetic images. The batch size was set to 64, and the other hyper-parameters of the
training were chosen according to the recommendation of [34].

The quantitative evaluation is shown in Tab. 4.1. The validation dataset was gen-
erated from the same distribution as the training dataset. On the other hand, the test
dataset contains 59 real images, taken in different environmental and illumination condi-
tions. Achieving an average of 98.78% mAP50 on the test dataset can be considered a
robust performance. Having a reliable output of the object detection stage is crucial as
this output is the input of the orientation estimation. As it is shown in Chapter 3, the
S2R-ObjDet method works for more classes as well, and as in the orientation estimation
stage, every class processed separately, our method can be easily scaled up to more classes.

For qualitative evaluation, Fig. 4.7 shows two accurate examples of object detection.
For more qualitative evaluation, we refer the reader to our qualitative evaluation video10.

4.6.3 Orientation estimation

To train the orientation estimation CNNs, 4320 synthetic annotated images were generated
with our S2R-PosEst method. As a real dataset, 15, 12, and 12 real images were available

9Pre-trained on ImageNet.
10https://youtu.be/luwA6RDEaoA

97

https://youtu.be/luwA6RDEaoA

Table 4.2: The success rate of the pose estimation model. An estimation is considered
successful if it is within 10 degrees of the ground truth.

Dataset Base Arm Gripper AVG STD
Train synthetic 99.76% 98.71% 99.54% 99.34% 0.55%
Train real 99.85% 99.75% 99.83% 99.81% 0.05%
Valid 100.0% 99.16% 99.72% 99.63% 0.42%
Test 99.17% 92.22% 99.72% 97.04% 4.18%

from the classes of the base, arm, and gripper. These real images were also augmented
by rotating them 359 times which resulted in (with the original one) 5400, 4320, and 4320
images per class. 720 (2 times 360) real images were taken away per class for validation and
testing. The loss function is MSE with Adam optimiser and the learning rate is 0.001. The
batch size is 128, the training time is 100 epochs with early stopping. The loss function
converged rapidly both on the training and on the validation set.

For quantitative evaluation, Tab. 4.2 shows the success rate of the models. An esti-
mation is considered successful if it is within 10 degrees of the ground truth. In the case
of the base and gripper objects, the success rate is above 99% in all datasets. In the
case of the arm, the model achieves a 92% success rate on the test dataset. The primary
reason behind this phenomenon might be the near 180-degree rotational symmetry of the
arm object. Restricting the estimation range to 180 degrees could potentially enhance
performance.

For qualitative evaluation, Fig. 4.7 shows an accurate and an inaccurate example of ori-
entation estimation. For more qualitative evaluation, we refer the reader to our qualitative
evaluation video11.

4.6.4 Robotic grasping

Finally, the performance of our models was measured in a real-world robotic grasping
experiment using a 7 DoF collaborative robot. Ten grasp attempts were made per class and
per model (all in all 60 grasp attempts). The results of the experiments are summarised in
Tab. 4.3. The real-time MOGPE-RT model worked well in the case of the arm and gripper
classes. Nevertheless, it failed to reliably grasp the base class. On the other hand, the
high-precision MOGPE-HP model could successfully grasp the objects most of the times,

11See footnote 10.

98

(a) Accurate example (b) Inaccurate example

Figure 4.7: An accurate (a) and an inaccurate (b) prediction. The orientation of the arm
is slightly tilted in the latter case. Regarding the object detection, both examples are
accurate.

yielding a 96.67 % success rate. Six grasp attempts are shown in our qualitative evaluation
video12.

Table 4.3: Results of the robotic grasping experiment.

Model Base Arm Gripper Success rate
MOGPE-RT 5/10 9/10 10/10 80%
MOGPE-HP 10/10 10/10 9/10 96.67%

4.7 Conclusion

In this chapter, robotic grasping was addressed, a critical challenge of adaptive robotics.
Two vision-based, multi-object grasp pose estimation models were presented – the real-time
MOGPE-RT and the high-precision MOGPE-HP – coupled with our sim2real knowledge
transfer methods (S2R-ObjDet and S2R-PosEst) based on domain randomization to di-
minish the reality gap and to overcome the data shortage.

12See footnote 10.

99

Our framework provides an industrial tool for fast data generation and model training
and requires minimal domain-specific data. In test time, the model does not only work
fast (object detection 20 FPS, orientation estimation 100 FPS) but performs well (98.78%
mAP50 score, and 97.04% success rate).

Our approach is validated not only on images but in a real-world robotic grasping
experiment where the MOGPE-RT model achieved an 80%, while the MOGPE-HP model
accomplished a 96.67% success rate.

Based on the findings presented in this chapter, our theses connected to the second
research question regarding extending our S2R-ObjDet method to multi-object grasp pose
estimation are as follows:

Thesis III: Our novel two-stage multi-object grasp pose estimation
methods – the real-time MOGPE-RT and the high-precision MOGPE-
HP – enable a modular training approach for multi-object grasp pose
estimation by utilizing sequential phases of object detection and class-
specific orientation estimation.

We propose two vision-based, multi-object grasp pose estimation mod-
els – the real-time MOGPE-RT and the high-precision MOGPE-HP – de-
picted in Fig. 4.1. Both models are built upon two core components: an
object detection model and an orientation estimation model. The output
of the object detection model is y = {(bi, cclassi , pconi) | i = 1, 2, . . . , N},
where bi = [xi, yi, wi, hi] ∈ [0, 1]4 represents the axis-aligned bounding
box of the ith detection, cclassi ∈ N is the class label of the ith detection,
pconi ∈ [0, 1] is the confidence score of the ith detection, and N ∈ N is
the number of detected objects. The detections with pconi < τcon are fil-
tered out, where τcon ∈ [0, 1] is the confidence threshold. The ROI crop-
ping module extracts specific objects from the image and resizes them
to the appropriate dimensions and shape. The class-specific orientation
estimation models compute the sin(θi) and cos(θi) for all objects, where
θi ∈ [−π, π] is the orientation angle. Then, with the atan2 function, the
θi angles are computed which is the output of the MOGPE-RT model. In
the case of the MOGPE-HP model, an additional local pattern-matching
algorithm is incorporated, allowing for the estimation of a more precise
θ∗ ∈ [−π, π] at the expense of the extra computation. This thesis is as-
sociated with [4].

100

Thesis IV: Our novel S2R-PosEst method facilitates rapid synthetic
data generation for single-class orientation estimation models, effectively
bridging the reality gap.

We propose S2R-PosEst, a sim2real domain randomization method for
pose estimation, based on our S2R-ObjDet method. The 3D model of the
given object is placed in the simulator and rotated around the z-axis – per-
pendicular to the plane where the object is placed – while random textures
are added to the plane and to the object as well. All together, there are
nrot = ⌊ 2π

βres
⌋ rotations, where nrot ∈ N is the number of rotation and

βres ∈ R is the resolution in radian. For each rotation, an image is taken
and the label is automatically generated with it. The data generation re-
quires 0.25–0.5s per image, making it suitable for industrial applications.
This thesis is associated with [4].

101

Chapter 5
Highlight experience replay

Contents
5.1 Introduction . 103

5.2 Related works . 105

5.2.1 Data exploitation . 106

5.2.2 Data collection . 106

5.3 Method . 109

5.3.1 HiER . 109

5.3.2 E2H-ISE . 112

5.3.3 HiER+ . 115

5.4 Results . 115

5.4.1 Evaluation protocol . 118

5.4.2 Aggregated results across all tasks 119

5.4.3 Panda-Gym . 122

5.4.4 Gymnasium-Robotics Fetch . 123

5.4.5 Gymnasium-Robotics PointMaze 123

5.4.6 Qualitative evaluation . 128

5.4.7 HiER λ, HiER ξ, and E2H-ISE c versions 130

5.4.8 TD3 and DDPG . 130

5.5 Conclusion . 130

102

In Chapter 3 and Chapter 4, the main focus was on transferring knowledge from simu-
lation to the real world in cases of supervised learning problems, namely object detection
and pose estimation. Nevertheless, the endeavor for adaptive robots is coupled not only
with transferability but universality as well. An important building block in this attempt
might be reinforcement learning. Similarly to humans, RL algorithms learn from trial-
and-error through interactions with the environment. Compared to supervised learning,
RL is especially beneficial for robotic tasks that require a high level of dexterity. It is
important to note that transferability and universality are not completely separate con-
cepts as by definition, universal solutions are easily transferable to other tasks, robots, or
domains. In this chapter, we focus on how to improve the state-of-the-art RL algorithms
with curriculum learning.

Even though RL algorithms achieved superhuman performance in many domains, the
field of robotics poses significant challenges as the state and action spaces are continuous,
and the reward function is predominantly sparse. Furthermore, on many occasions, the
agent is devoid of access to any form of demonstration. Inspired by human learning,
in this chapter, we propose a method named highlight experience replay (HiER) that
creates a secondary highlight replay buffer for the most relevant experiences. For the
weights update, the transitions are sampled from both the standard and the highlight
experience replay buffer. It can be applied with or without the techniques of hindsight
experience replay (HER) and prioritized experience replay (PER). Our method significantly
improves the performance of the state-of-the-art, validated on 8 tasks of three robotic
benchmarks. Furthermore, to exploit the full potential of HiER, we propose HiER+ in
which HiER is enhanced with an arbitrary data collection curriculum learning method.
Our implementation, the qualitative results, and a video presentation are available on the
project site: www.danielhorvath.eu/hier.

5.1 Introduction

Reinforcement learning methods, especially combined with neural networks (deep reinforce-
ment learning), were proven to be superior in many fields such as achieving superhuman
performance in chess [77], Go [78], or Atari games [79]. Nevertheless, in the field of robotics,
there are significant challenges yet to overcome. Most importantly, the state and action
spaces are continuous which intensifies the challenge of exploration. Oftentimes, discretiza-
tion is not feasible due to loss of information or accuracy, preventing the application of
tabular RL methods with high stability. Furthermore, the reward functions of robotic tasks
are predominantly sparse which escalates the difficulty of exploration.

103

http://www.danielhorvath.eu/hier/

Introducing prior knowledge in the form of reward shaping could facilitate the explo-
ration by guiding the agent toward the desired solution. However, 1) constructing a sophis-
ticated reward function requires expert knowledge, 2) the reward function is task-specific,
and 3) the agent might learn undesired behaviours. Another source of prior knowledge
could be in the form of expert demonstrations. However, collecting demonstrations is of-
tentimes expensive (time and resources) or even not feasible. Furthermore, it constrains
transferability as demonstrations are task-specific.

In parallel to constructing more efficient RL algorithms such as state-of-the-art actor-
critic models (DDPG [80], [81], TD3 [82], and SAC [83]), another line of research focuses on
improving existing RL algorithms by controlling the data collection [89]–[95], [241], [242]
or the data exploitation [84]–[88], [243] process. Following [97], in this work, we consider
both the data collection and the data exploitation methods as curriculum learning (CL)
methods [96]–[98]. The former is oftentimes referred to as traditional and the latter as
implicit CL.

Our aim is to improve the training of off-policy reinforcement learning agents, particu-
larly in scenarios with continuous state and action spaces, sparse rewards, and the absence
of demonstrations. These conditions pose significant challenges for state-of-the-art RL al-
gorithms, due to the challenging problem of exploration. Our contribution to the field is
as follows.

1. HiER: The highlight experience replay creates a secondary experience replay buffer
to store the most relevant transitions. At training, the transitions are sampled from
both the standard experience replay buffer and the highlight experience replay buffer.
It can be added to any off-policy RL agent and applied with or without the tech-
niques of hindsight experience replay (HER) [84] and prioritized experience replay
(PER) [86]. If only positive experiences are stored in its buffer, HiER can be viewed
as a special, automatic demonstration generator as well. Following [97], HiER is
classified as a data exploitation or implicit curriculum learning method.

2. HiER+: The enhancement of HiER with an arbitrary data collection (traditional)
curriculum learning method. The overview of HiER+ is depicted in Fig.5.1. Fur-
thermore, as an example of the data collection CL method, we propose E2H-ISE,
a universal, easy-to-implement easy2hard data collection CL method that requires
minimal prior knowledge and controls the entropy of the initial state-goal distribution
H(µ0) which indirectly controls the task difficulty1

1ISE stands for initial state entropy.

104

Collecting
Experiences

Weight
UpdatePERHER

Data Collection CL
(e.g.: E2H-ISE)

Standard off-policy RL algorithm Standard add-ons (optional) HiER

updated policy

episode

Data Collection CL

HiER+

init state μ0(c)

Model training

λ

ξ

hindsight
exp. replay

prioritized
exp. replay

combined
batch

HiER batch

standard
batch

standard
exp. replay

buffer

condition
highlight exp. replay

buffer

Data collection Data exploitation

Figure 5.1: Overview of HiER and HiER+. For every episode, the initial state is sampled
from µ0. After every episode, the transitions are stored in Bser, and in case the λ condition
is fulfilled then in Bhier as well. For training, the transitions are sampled from both Bser
and Bhier according to the ratio ξ. For a detailed description, see Algorithm 1 and 2.

To demonstrate the universality of our methods, HiER is validated on 8 tasks of three
different robotic benchmarks [244]–[246] based on two different simulators [188], [192], while
HiER+ is evaluated on the push, slide, and pick-and-place tasks of the Panda-Gym [244]
robotic benchmark. Our methods significantly improve the performance of the state-of-
the-art algorithms for each task.

The background of reinforcement learning and curriculum learning is presented in Sec-
tion 2.3 and 2.4. This chapter is structured as follows: in Section 5.2, a literature review
is presented. In Section 5.3 and 5.4, HiER, E2H-ISE, and HiER+ are detailed with the
experimental results. Finally, the summary of our findings is provided in Section 5.5.

5.2 Related works

The summary of the related works is presented in Tab. 5.1. Following Section 2.4, the
CL algorithms are categorised as data exploitation or data collection methods, presented
in Section 5.2.1 and 5.2.2. Data exploitation methods either modify the transitions or
control the transition selection. The structure and the performance of HiER are compared

105

with the state-of-the-art in Section 5.3.1 and 5.4. On the other hand, the data collection
methods – presented in Section 5.2.2 – either control the initial state distribution or the goal
distribution. The E2H-ISE method controls both the initial state distribution and the goal
distribution as the state space is augmented with the goal, as described in Section 2.3.2.
Comparison with the state-of-the-art is presented in Section 5.3.2 and 5.4.

5.2.1 Data exploitation

Schaul et al. [86] proposed the technique of prioritized experience replay (PER) which
controls the transition selection by assigning priority (importance) scores to the samples
of the replay buffer based on their last TD error [247] and thus, instead of uniformly, they
are sampled according to their priority. Additionally, as high-priority samples would bias
the training, importance sampling is applied.

As a form of prioritization, Oh et al. [87] introduced self-imitation learning (SIL) for
on-policy RL. The priority is computed based on the discounted cumulative rewards. Fur-
thermore, the technique of clipped advantage is utilised to incentivise positive experiences.
By modifying the Bellmann optimality operator, Ferret et al. [243] introduced self-imitation
advantage learning which is a generalised version of SIL for off-policy RL.

Wang et al. [88] presented the method of emphasising recent experience which is a
transition selection technique for off-policy RL agents. It prioritises recent data without
forgetting the past while ensuring that updates of new data are not overwritten by updates
of old data.

Andrychowicz et al. [84] introduced the technique of hindsight experience replay (HER)
which performs transition modification to augment the replay buffer by adding virtual
episodes. After collecting an episode and adding it to the replay buffer, HER creates
virtual episodes by changing the (desired) goal to the achieved goal at the end state (or
to another state depending on the strategy) and relabeling the transitions before adding
them to the replay buffer.

Bujalance and Moutarde [85] propose reward relabeling to guide exploration in sparse-
reward robotic environments by giving bonus rewards for the last L transitions of the
episodes.

5.2.2 Data collection

Florensa et al. [89] presented the reverse curriculum generation method to facilitate ex-
ploration for model-free RL algorithms in sparse-reward robotic scenarios. At first, the

106

Table 5.1: Summary of related works.

What does
CL control?

Work Short description

D
a
ta

ex
p
lo
it
a
ti
o
n

Transition
HER [84]

Creating virtual episodes by changing the desired
goal to the achieved goal.

modification
R2 [85]

Reward relabelling of last transitions of successful
episodes.

Transition

PER [86]
Transition selection is based on the last TD-error of
the given transition.

SIL [87]
Transition selection is based on the clipped advan-
tage.

selection
ERE [88]

In transition selection, recent data is prioritized,
without forgetting the old transitions.

HiER (ours)
Creating a secondary replay buffer for the
most relevant experiences.

D
at
a
co
ll
ec
ti
on

Initial

Reverse curricu-
lum gen. [89]

Inititial state is close to the goal. The distance to the
goal is gradually increased throughout the training.

state BaRC [90]
Generalization of [89] by approximating backward
reaching sets.

distribution
Salimans and
Chen [91]

Initial state is sampled from human demonstration.
The distance to the goal is gradually increased.

Goals

Asymmetric self-
play [92]

Training an agent against differently capable versions
of itself to enhance its adaptability and robustness.

Goal GAN [93]
A generator is trained to output new goals with ap-
propriate (intermediate) difficulty.

Skew-Fit [94]
Maximising the entropy of the goal-conditioned vis-
ited states by giving higher weights to rare samples.

Racanière [95]
Setter agent generates goals for the solver agent con-
sidering goal validity, feasibility, and coverage.

Initial state-
goal dist.

E2H-ISE (ours)
The initial state-goal distribution entropy is
gradually increased throughout the training.

environment is initialised close to the goal state. For new episodes, the distance between
the initial state and the goal state is gradually increased. As prior knowledge, at least one
goal state is required. To sample nearby feasible states, the environment is initialised in a

107

certain seed state (in the beginning at a goal state), and then, for a specific time, random
Brownian motion is executed.

Ivanovic et al. [90] proposed the backward reachability curriculum method which is a
generalization of [89] utilising prior knowledge of the simplified, approximate dynamics of
the system. They compute the approximate backward reaching sets using the Hamilton-
Jacobi reachability formulation and sample from them using rejection sampling.

Salimans and Chen [91] facilitate exploration by utilising one human demonstration.
In their method, the initial states come from the demonstration. More precisely, until
a timestep tD ∈ N, the agent copies the actions of the demonstration, and after tD, it
takes actions according to its policy. During the training, tD is moved from the end of the
demonstration to the beginning of the demonstration. Their method outperformed state-
of-the-art methods in the Atari game Montezuma’s Revenge. Nevertheless, arriving at the
same state after a specific sequence of actions (as in the demonstration) is rather unlikely,
especially when the transition function is profoundly stochastic, such as in robotics.

Sukhbaatar et al. [92] present automatic curriculum generation with asymmetric self-
play of two versions of the same agent. One proposes tasks for the other to complete. With
an appropriate reward structure, they automatically create a curriculum for exploration.

Florensa et al. [93] create a curriculum for multi-goal tasks by sampling goals of in-
termediate difficulty. First, the goals are labelled based on their difficulty, and then a
generator is trained to output new goals with appropriate difficulty to efficiently train the
agent.

Pong et al. [94] proposed Skew-Fit, an automatic curriculum that attempts to create
a better coverage of the state space by maximising the entropy of the goal-conditioned
visited states H(S|G) by giving higher weights to rare samples. Skew-Fit converges to
uniform distribution under specific conditions.

Racanière et al. [95] proposed an automatic curriculum generation method for goal-
oriented RL agents by training a setter agent to generate goals for the solver agent consid-
ering goal validity, goal feasibility, and goal coverage.

The data collection CL methods are relatively disparate, however, some share specific
characteristics. The methods that control the initial state distribution [89]–[91] attempt
to reduce the task difficulty by proposing less challenging starting positions. Other algo-
rithms [92], [95], utilise a secondary agent to train the protagonist. Instead of focusing on
task difficulty, the E2H-ISE algorithm controls the entropy of the init-goal state distribu-
tion H(µ0). Among the considered methods, only Skew-Fit [94] controls the entropy but
in that case, it is the entropy of the goal-conditioned visited states H(S|G), not H(µ0).

108

5.3 Method

In this Section, our contributions are presented. First, HiER in Section 5.3.1, and then
E2H-ISE and HiER+ in Section 5.3.2 and 5.3.3. The implementation is available at our
git repository2.

5.3.1 HiER

Humans remember certain events stronger than others and tend to replay them more fre-
quently than regular experiences thus learning better from them [248]. As an example, an
encounter with a lion or scoring a goal at the last minute will be engraved in our mem-
ory. Inspired by this phenomenon, HiER attempts to find these events and manage them
differently than regular experiences. In this work, only positive experiences are considered
with HiER, thus it can be viewed as a special, automatic demonstration generator as well.

HER and PER control what transitions to store in the experience replay buffer and
how to sample from them. Contrary to them, HiER creates a secondary experience replay
buffer. Henceforth, the former buffer is called standard experience replay buffer Bser,
and the latter is referred to as highlight experience replay buffer Bhier. At the end of
every episode, HiER stores the transitions in Bhier if certain criteria are met. For updates,
transitions are sampled both from the Bser and Bhier based on a given sampling ratio. HiER
is depicted in Fig. 5.1 marked in blue and detailed in Algorithm 1.

The criteria can be based on any type of performance measure. In our case, the undis-
counted sum of rewards G0 =

∑T
i=0 ri was chosen. For simplicity, henceforth, G0 is referred

to as G. The reward function r is formulated as in Eq. (2.10). Although more complex
criteria are possible, in this work, we consider only one performance measure and one cri-
terion: if G is greater than a threshold λ ∈ R then all the transitions of that episode are
stored in Bhier and Bser, otherwise only in Bser. Nevertheless, λ can change in time, thus we
define a λj for every j where j ∈ N is the index of the episode. In this work, the following
λ modes were considered:

• fix: λj = Zλ for every j where Zλ ∈ R is a constant.3

• predefined: λ is updated according to a predefined profile. Profiles could be arbi-
trary, such as linear, square-root, or quadratic. In this work only the linear profile

2https://github.com/sztaki-hu/hier
3We also tried a version with m ∈ N highlight buffers and m thresholds λ1, λ2, . . . , λm. An episode is

stored in the highlight buffer with the highest λi for which G > λi.

109

https://github.com/sztaki-hu/hier

Algorithm 1 HiER

1: λ, ξ, θ, ϕ ▷ Initialise variables and model parameters
2: nbatch, nhier ← ξ · nbatch ▷ Initialise batch sizes
3: Bser ← [], Bhier ← [] ▷ Initialise buffers
4: N ← 100,Geval ← [], νeval ← [] ▷ Initialise evaluation variables and metrics
5: E ← [] ▷ Initialise episode buffer
6: s ∼ µ0 ▷ Initialise environment
7: while Convergence do
8: a← πθ(s) ▷ Collecting data
9: s′, r, d ∼ p(s, a)
10: E ← E + [(s, a, s′, r, d)]
11: s← s′

12: if Episode ends then
13: Bser ← Bser + [E] ▷ Store transitions of episode E
14: Bser ← Bser + [EV1 , EV2 , . . . , EVm] ▷ HER (optional): Store virtual episodes
15: Update λj ▷ HiER: Section 5.3.1
16: if λj <

∑
ri∈E ri then

17: Bhier ← Bhier + [E]
18: end if
19: E ← []
20: s ∼ µ0

21: end if
22: if Weight update then
23: Dser ← select (nbatch − nhier) sample from Bser
24: Dhier ← select nhier sample from Bhier
25: D ← Dser +Dhier

26: Update weights θ, ϕ based on D
27: Update priorities in Bser ▷ PER (optional)
28: Update ξk ▷ HiER: Section 5.3.1
29: nhier ← ξk · n
30: end if
31: if Evaluation then
32: E = (EE1 , EE2 , . . . , EEN), EEi = (si,0, ai,0, ri,1, . . . , si,T) ∼ πθ, p, si,0 ∼ µ0

33: Geval ← Geval+
[

1
N

∑N
i=1

[
1
|ri|

∑|ri|
j=1 ri,j

]]
▷ Append with mean accumulated reward

34: νeval ← νeval+
[

1
N

∑N
i=1 1{si,T∈Sg}

]
▷ Append with mean success rate

35: end if
36: end while

110

with saturation was considered:

λj = (λsat − λ0)min

(
1,

t

Ttotal · zsat

)
+ λ0, (5.1)

where t ∈ N and Ttotal ∈ N are the actual, and the total timesteps of the training and
zsat ∈ [0, 1] is a scaler, indicating the start of the saturation.4 Furthermore, λ0 ∈ R
and λsat ∈ R is the initial value of λ, while λsat ∈ R is the λ value after saturation.

• ama (adaptive moving average): λ is updated according to:

λj =

{
min

(
λmax, M + 1

w

∑w
i=1G

j−i
)
, if j > w

λ0, otherwise,
(5.2)

where λ0 ∈ R is the initial value of λ, while λmax ∈ R is the maximum value allowed
for λ. Furthermore, Gj is the undiscounted return of the jth episode, w ∈ Z+ is the
window size and M ∈ R is a constant shift.5

Another relevant aspect of HiER is the sampling ratio between Bser and Bhier for weight
update, defined by ξ ∈ [0, 1]. It can change in time, updated after every weight update,
thus we define a ξk for every k where k ∈ N is the index of the weight update. The following
versions were considered:

• fix: ξk = Zξ for every k where Zξ ∈ R is a constant.

• prioritized: ξ is updated according to:6

ξk =
Lαp

hier,k

Lαp

hier,k + L
αp

ser,k

, (5.3)

where Lhier,k ∈ R and Lser,k ∈ R are the TD errors of the training batches sampled
from Bhier and Bser at k. The parameter αp ∈ [0, 1] determines how much prioritiza-
tion is used.7

Sampling from Bhier and not only from Bser introduce a bias towards the experiments
collected in Bhier. This bias is similar in nature to the case when demonstrations are utilised.

4In the equation, λj does not directly depend on j. However as t increases, so does j and λj with it.
5In an alternative version M is not a constant but relative to 1

w

∑w
i=1 G

j−i.
6Similarly as in the case of PER.
7If αp = 0, then ξ = 0.5 regardless Lhier,k and Lser,k.

111

In that scenario, the expert demonstrations are sampled and combined with online expe-
rience, biasing the exploration towards the desired behaviour. In our case, as the agent is
devoid of any form of demonstration, Bhier serves similarly as a demonstration buffer. This
bias is essential for achieving enhanced performance (presented in Section 5.4). However, it
might be useful to constrain the bias to avoid overfitting on experiences from Bhier. On one
hand, the predefined and the ama λ methods alleviate the bias by setting the entry of Bhier
lower at the beginning and gradually increasing it resulting in a higher cardinality for Bhier
and higher similarity between Bhier and Bser. Furthermore, the presented prioritized ξ
method prevents overfitting on the data of Bhier as low Lhier loss reduces ξ – see Eq. (5.3).
On the other hand, the bias could be further reduced by gradually decreasing ξ over time,
or the gradient of the data from Bhier could be scaled, similarly to importance sampling in
the case of PER [86].

Another relevant aspect worth detailing is the difference between the prioritized ξ
method and PER. While PER changes the probability distribution of selecting specific
transitions from Bser based on their individual TD error, the prioritized ξ method con-
trols sampling between Bser and Bhier based on the mean TD error of the data selected
from Bser and Bhier. Thus, the sampling distribution of PER has |Bser| outputs while the
sampling distribution of the prioritized ξ method has two outputs, one for Bser and one
for Bhier. Another relevant difference is that in the prioritized ξ method, contrary to
PER, the gradients are not scaled, similar to a standard demonstration buffer.

It is important to note that the formulation of HiER is fundamentally different
from [84]–[88], [243], not only but most importantly because of the idea of the secondary
experience replay.

5.3.2 E2H-ISE

A key attribute of HiER is that it learns from relevant positive experiences, described in
Section 5.3.1. However, if these experiences are scarce in the first place, Bhier would be
considerably limited or even empty. Thus, HiER could benefit from an easy2hard data
collection CL method by having access to more positive experiences.

E2H-ISE is a data collection CL method based on controlling the entropy of the initial
state-goal distribution H(µ0) and with it, indirectly, the task difficulty. In general, µ0

is constrained to one point (zero entropy) and moved towards the uniform distribution
on the possible initial space (max entropy). Even though certain E2H-ISE versions allow
decreasing the entropy, in general, they move µ0 towards max entropy.

To formalise E2H-ISE, the parameter c ∈ [0, 1] is introduced as the scaling factor of
the uniform µ0, assuming that the state space, including the goal space, is continuous and

112

bounded. The visualization of the scaling factor c is depicted in Fig. 5.2. If c = 1 there is
no scaling, while c = 0 means that µ0 is deterministic and returns only the centre point of
the space. To increase or decrease H(µ0), c changes in time, thus we define cj for every j
where j ∈ N is the index of the episode. At the start of the training, c is initialised and it
is updated at the beginning of every training episode before s0 is sampled from µ0.

8 The
following versions are proposed for updating c:9

• predefined: c changes according to a predefined profile similar as in the case of λ
predefined (see Section 5.3.1). In this work, only the linear profile with saturation
was considered.

• self-paced: c is updated according to:

cj =

min(1, cj−1 + δstep), if νtrain,W > Ψhigh

max(0, cj−1 − δstep), if νtrain,W < Ψlow

cj−1, otherwise,

(5.4)

where ν̄train,W ∈ [0, 1] is the mean of the last W ∈ N training success rates
in νtrain = [νtrain1 , νtrain2 , . . . , νtrainntrain

] ∈ [0, 1]ntrain . Mathematically, ν̄train,W =
1
W

∑ntrain

i=ntrain−W+1 ν
train
i . Furthermore, δstep ∈ [0, 1] is the step size, and Ψhigh, Ψlow ∈

[0, 1] are threshold values.10 After any update on c, νtrain is emptied11, and the
update on c is restarted after W episodes.

• control: c is updated according to:

cj =

{
min(1, ct−j + δstep), if νtrain,W ≥ ψ

max(0, ct−j − δstep), if νtrain,W < ψ,
(5.5)

where ψ ∈ [0, 1] is the target. The algorithm attempts to move and keep νtrain at ψ.
Updates are executed only if j > W .

• control adaptive: This method is similar to control but the target success rate
ψ is not fixed but computed from the mean evaluation success rate:

ψj = min
(
ψmax, ∆+ νeval,V

)
, (5.6)

8For evaluation, the environment is always initialised according to the unchanged µ0.
9We have experimented with a 2-stage version where µ0 and µG (initial goal distribution) were sepa-

rated.
10If Ψlow = 0, then c can only increase.
11The circular buffer storing the success rates.

113

where ν̄eval,V ∈ [0, 1] is the mean of the last V ∈ N evaluation success rates in νeval =
[νeval1 , νeval2 , . . . , νevalneval

] ∈ [0, 1]neval . Mathematically, ν̄eval,V = 1
V

∑neval

i=neval−V+1 ν
eval
i .

Furthermore, ∆ ∈ [0, 1] is a constant shift (as we want to target a better success
rate than the current) and ψmax ∈ R is the maximum value allowed for ψ.12 Updates
are executed only if j > V .

Figure 5.2: Visualization of the effect of parameter c on µ0 in a 2D case where state
s = [sx, sy]. The initial state s0 = [s0,x, s0,y] is sampled from the probability distribution
µ0(c).

Sampling from µ0(c ̸= 1) introduces bias to the states within the probability distribution
of µ0(c). This bias is reduced as c increases. Furthermore, as the buffers are circular,
once they reach their capacity, the old experiences are replaced with new ones. On the
other hand, we conducted experiments on dynamically subtracting the centre of µ0(c) to
counterbalance the sampling bias, e.g.: µ0(c) = µ0(c1) − µ0(c2) where c1 > c2. However,
they did not result in any improvement. Our experimental results, presented in Section 5.4,
show that accepting the bias and starting with c close to zero is beneficial as HiER+ further
improves the performance of HiER.

It is important to note that our E2H-ISE formulation is inherently different from [89]–
[91] as our solution does not concentrate on goal difficulty but the entropy of µ0. In our
case, the easy2hard attribute derives from the magnitude of the entropy and not from the
goal difficulty. It is also disparate from [94] as their solution maximises the entropy of
goal-conditioned visited states H(S|G) and not H(µ0). Nevertheless, the E2H-ISE method
is only an example of data collection CL methods that can be utilised in HiER+. It is
proposed in this work, as it is significantly easier to implement than the presented, more
sophisticated, state-of-the-art methods, while it is universal and requires minimal prior
knowledge. Thus, the full potential of HiER+ can be presented conveniently with the

12It is important to note that contrary to the training, in the evaluation, we sample from the unrestricted
µ0 (c = 1), thus the eval success rate represents the real success rate of the agent. Consequently, c can be
set to keep the training to a success rate that is just (by ∆) above the eval success rate.

114

E2H-ISE method. Comparing different data collection CL methods in HiER+ is out of the
scope of this work.

5.3.3 HiER+

In this section, HiER+ is presented which is an enhancement of HiER with an arbitrary
data collection CL method. Even though in this work, we present HiER+ with E2H-
ISE, it is important to note that the fundamental architecture of HiER+ would remain
consistent when paired with alternative data collection CL approaches. It can be added
to any off-policy RL algorithm with or without HER and PER, as depicted in Fig. 5.1
and presented in Algorithm 2. Having initialised the variables and the environment (Lines
1–6), the training loop starts. After collecting an episode, its transitions are stored in Bser,
and if HER is active then virtual experiences are added as well (Lines 13–14).13 Then the
λ parameter of HiER is updated and if the given condition is met, the episode is stored
in Bhier as well (Lines 15–18). In the next steps, the c parameter of E2H-ISE is updated
and the environment is reinitialised (Line 19–21), thus the agent can start collecting the
next episode. At a given frequency, the weights of the models are updated (Line 23–31).
The batches of Dser and Dhier are sampled and combined (Lines 24–26). After the weight
update (Line 27), if PER is active, the priorities in Bser are updated (Line 28). Finally, the
ξ parameter and with it the batch size of HiER is updated (Lines 29–30). In the periodic
evaluation, N episodes are simulated with evaluation settings – meaning that c = 1 (Line
33). Then, the relevant metrics are computed and stored in the corresponding lists (Lines
34–35). It is important to note that if the parameter c = 1 throughout the training
(changing Line 1 and removing Line 19), then Algorithm 2 is equivalent to Algorithm 1
which describes HiER.

It is worth mentioning that HiER+ utilizes a data collection CL method which might
require setting the initial states of the episodes. This constraint can be challenging to
meet in certain closed simulators and may pose difficulties in real-world robotic training
environments. In contrast, HiER does not have this constraint.

5.4 Results

Our contributions were validated on 8 tasks of three robotic benchmarks. The tasks are
the push, slide, and pick-and-place tasks of the Panda-Gym [244] and the Gymnasium-

13Bser and Bhier are circular buffers, thus once they are full, the new transitions are replacing the old
ones.

115

Algorithm 2 HiER+

1: c0 ← 0, λ, ξ, θ, ϕ ▷ Initialise variables and model parameters
2: nbatch, nhier ← ξ · nbatch ▷ Initialise batch sizes
3: Bser ← [], Bhier ← [] ▷ Initialise buffers
4: N ← 100,Geval ← [], νeval ← [] ▷ Initialise evaluation variables and metrics
5: E ← [] ▷ Initialise episode buffer
6: s ∼ µ0(c0) ▷ Initialise environment
7: while Convergence do
8: a← πθ(s) ▷ Collecting data
9: s′, r, d ∼ p(s, a)
10: E ← E + [(s, a, s′, r, d)]
11: s← s′

12: if Episode ends then
13: Bser ← Bser + [E] ▷ Store transitions of episode E
14: Bser ← Bser + [EV1 , EV2 , . . . , EVm] ▷ HER (optional): Store virtual episodes
15: Update λj ▷ HiER: Section 5.3.1
16: if λj <

∑
ri∈E ri then

17: Bhier ← Bhier + [E]
18: end if
19: Update cj ▷ E2H-ISE: Section 5.3.2
20: E ← []
21: s ∼ µ0(cj)
22: end if
23: if Weight update then
24: Dser ← select (nbatch − nhier) sample from Bser
25: Dhier ← select nhier sample from Bhier
26: D ← Dser +Dhier

27: Update weights θ, ϕ based on D
28: Update priorities in Bser ▷ PER (optional)
29: Update ξk ▷ HiER: Section 5.3.1
30: nhier ← ξk · n
31: end if
32: if Evaluation then
33: E = (EE1 , EE2 , . . . , EEN), EEi = (si,0, ai,0, ri,1, . . . , si,T) ∼ πθ, p, si,0 ∼ µ0(c = 1)

34: Geval ← Geval+
[

1
N

∑N
i=1

[
1
|ri|

∑|ri|
j=1 ri,j

]]
▷ Append with mean accumulated reward

35: νeval ← νeval+
[

1
N

∑N
i=1 1{si,T∈Sg}

]
▷ Append with mean success rate

36: end if
37: end while

116

Robotics Fetch benchmarks [245], and two mazes of the Gymnasium-Robotics PointMaze
environment [246] – depicted on Fig. 5.12. The Panda-Gym Environment is based on the
PyBullet [192] physics engine while the Gymnasium-Robotics Fetch and PointMaze envi-
ronments are based on MuJoCo [188]. The state and action spaces vary depending on the
task. In general, the state space contains the kinematic information of the scene and the
goal description while the action space represents the displacement or the force applied
on the robot. It is important to note that for all tasks, the state and action spaces are
continuous, and the reward function is sparse without any reward shaping. Furthermore,
the agent is devoid of access to any form of demonstration. These constraints, significantly
exacerbate the difficulty of exploration. It should be emphasised that solving these tasks
with rule-based algorithms requires substantial effort and precise engineering due to the
continuous nature of the spaces and the inherent stochasticity of the environment. For
further details on the benchmarks, the reader is directed to the relevant sections – Sec-
tion 5.4.3, Section 5.4.4, and Section 5.4.5 –their corresponding papers [244]–[246] and
their documentations [249]–[251].

The naming convention of the algorithms is the following: Algorithm [Components].
The algorithm can be either Baseline, HiER, or HiER+, and the options for the components
are HER and PER 14. Thus, Baseline [HER & PER] means that the base (SAC, TD3, or
DDPG) RL algorithm was applied with HER and PER. On the other hand, HiER [HER]
means that the base RL algorithm was applied with our HiER method and HER but
without PER. HiER+ is HiER with E2H-ISE.

First and foremost, we present our evaluation protocol in Section 5.4.1 which is essen-
tial for result reproducibility. Then, the aggregate performance (across all tasks) of HiER
is shown compared to their corresponding baselines in Section 5.4.2. Subsequently, HiER
and HiER+ (with E2H-ISE) are thoroughly evaluated on the push, slide, and pick-and-
place tasks of the Panda-Gym robotic benchmark in Section 5.4.3. Furthermore, HiER
is evaluated on the push, slide, and pick-and-place tasks and two mazes – depicted on
Fig. 5.12 – of the Gymnasium-Robotics Fetch and PointMaze benchmarks in Section 5.4.4
and Section 5.4.5. Then, the qualitative results of all tasks are evaluated in Section 5.4.6.
Additionally, the comparisons of the different ξ, λ, and c methods are presented in Sec-
tion 5.4.7. Finally, our method is validated with DDPG and TD3 in Section 5.4.8.

For our experiments, the SAC RL algorithm was chosen, except in Section 5.4.8. The
standard hyperparameters are set as default in [252] except the discount factor γ = 0.95
as in [244], and the SAC entropy maximization term α = 0.1. The buffer size of Bhier was
set to 106.

14With the exception of Fig. 5.17.

117

In all the experiments with the exception of Section 5.4.7, HiER was applied with
the predefined λ method and with the prioritized version of ξ when PER was active
and with the fix version with ξ = 0.5 otherwise. Furthermore, in HiER+, the E2H-ISE
method was employed with the self-paced option. The aforementioned settings were
selected according to our comparison presented in Section 5.4.7.

5.4.1 Evaluation protocol

For results reproducibility, it is important to disclose the evaluation protocol. Each algo-
rithm (configuration) and task pair is trained in 10 independent runs with different random
seeds. For every run, at a specified frequency, the evaluation performance of the model is
measured, presented at Lines 31–35 of of Algorithm 1 which is equivalent to the Lines 32–
36 of Algorithm 2. The two most relevant performance metrics are the evaluation success
rate (νeval) and the evaluation accumulated reward (Geval), henceforth success rate and
reward. In this work, the performance is measured 50 times during a single training, and
each time, the evaluation score is computed by taking the mean of 100 episodes. At the
end of the training, all evaluation metrics – most importantly νeval and Geval – are saved
and stored. For the evaluation presented in this paper, in the case of success rates, the best
scores of each run were the base datapoints – [maxνeval

run1,maxνeval
run2, . . . ,maxνeval

run10]. From
these data points (10 per algorithm-task pair), the mean, median, IQM, and OG scores
were computed. This evaluation protocol follows [79], [253], [254] and the idea is similar
to the method of early stopping.

In the following sections, the primary basis of evaluation is the success rate which was
chosen for the following reasons:

• Our main objective is to solve the tasks with the highest success rate. As we focus
on sparse reward scenarios with Eq. (2.10), the only additional information in the
reward score is how fast the agent solved the task which is less relevant in our case.

• The success rate is an already normalised scale between zero and one. Reward scores
of Eq. (2.10) with different time horizons are significantly disparate.

• The reward value depends on the reward function itself. The same task can be
executed with a different reward function, whose results are not comparable.

• The success rate could be seen as a specific reward function giving zero reward to
every non-goal state, and one for every goal state.

118

Nevertheless, we report our reward scores, for the aggregated results, presented in Tab. 5.2,
and for the results of HiER and HiER+ on the Panda-Gym environment, displayed in
Tab. E.2. In the cases of reward scores, instead of the best, the last values of each run were
utilised. Our aim is to show that our methods outperform the state-of-the-art not only in
the chosen evaluation protocol but in other protocols as well.

In general, we present our results with the mean, median, interquartile mean (IQM),
and optimality gap (OG) metrics. For the former three, higher values are better, while
for OG, the lower score is better. In the case of the success rate, the desired target is 1.0
which is the maximum achievable score15. For displaying the amount of uncertainty, in the
graphs, 95% confidence intervals (CIs) were applied.

For plotting the figures of aggregated results, the performance profiles, and the prob-
ability improvements, the rliable [158] library was utilised. Having 10 runs was sufficient,
thus we present our results without task bootstrapping (as default in rliable).

5.4.2 Aggregated results across all tasks

Prior to showing the experimental results on each of the three robotic benchmarks, this
section provides a summary of the aggregated results across all tasks, focusing on HiER
and HiER [HER].

Our experimental results are presented in Tab. 5.2 and Fig. 5.3. The results indicate
that both HiER versions outperform their corresponding baseline, and HiER [HER] yields
the best performance in all metrics. In terms of point estimates, while Baseline [HER]
yields 0.56 and -43.7 IQM success rate and IQM reward, HiER [HER] achieves 0.83 and
-32.48 scores which are increments of 0.27 and 11.22, respectively. Moreover, regarding the
uncertainty, both HiER and HiER [HER] are superior to their corresponding baselines as
the confidence intervals do not overlap.

Additionally, the performance profile graph, presented in Fig. 5.4, displays the run-
score and the average-score distributions of the aforementioned algorithms. It shows that
both HiER and HiER [HER] have stochastic dominance over their baselines.

Finally, Fig. 5.5 shows that both HiER and HiER [HER] outperform their baselines with
0.85 and 0.88 probability16. Additionally, HiER [HER] surpasses HiER with a probability
of 0.76.

15As the desired target is 1.0 which is in itself the highest possible number, these results are redundant
as the mean is also presented. Nevertheless, to facilitate comparison, we preferred to keep them in the
graphs.

16It is important to note that these probabilities could be significantly higher if the easy tasks were
removed.

119

Table 5.2: HiER compared to the state-of-the-art across all tasks. For the reward, there is
no universal desirable target, thus there is no OG value. The column-wise best results are
marked in bold. Both HiER version outperform their corresponding baseline. HiER [HER]
yields the best performance in all metrics.

Success rate Reward

H
E
R

H
iE
R

Mean ↑ Median ↑ IQM ↑ OG ↓ Mean ↑ Median ↑ IQM ↑

Baselines
- - 0.19 0.10 0.09 0.81 -111.56 -48.2 -48.91
✓- 0.57 0.50 0.56 0.43 -87.50 -43.19 -43.70

HiER
- ✓ 0.44 0.38 0.38 0.56 -98.72 -40.96 -42.28
✓✓ 0.75 0.80 0.83 0.25 -73.14 -31.35 -32.48

0.25 0.50 0.75
Baseline

HiER
Baseline [HER]

HiER [HER]
Mean

0.3 0.6 0.9

Median

0.3 0.6 0.9

IQM

0.25 0.50 0.75

Optimality Gap

Success rate score

Figure 5.3: HiER compared to the state-of-the-art across all tasks with 95% CIs. Both
HiER version outperform their corresponding baseline. HiER [HER] yields the best per-
formance in all metrics. The point estimates are presented in Tab. 5.2.

120

0.0 0.2 0.4 0.6 0.8 1.0
Success rate score()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>

0.0 0.2 0.4 0.6 0.8 1.0
Success rate score()

0.00

0.25

0.50

0.75

1.00

Fr
ac

tio
n

of
 ru

ns
 w

ith
 sc

or
e

>
Figure 5.4: Performance profiles across all tasks with 95% CIs. Left: run-score distri-
bution, right: average-score distribution. The red-dotted line shows the median values
while the areas under the performance profiles correspond to the mean values (compar-
ing with Tab. 5.2, the average-score distribution needs to be examined). Both HiER and
HiER [HER] have stochastic dominance over their corresponding baselines.

0.8 0.9
P(X > Y)

HiER

HiER [HER]

HiER [HER]
Algorithm X

Baseline

Baseline [HER]

HiER

Algorithm Y

Figure 5.5: Probability of improvement of HiER versions compared to their corresponding
baselines and themselves across all tasks with 95% CIs. The average probabilities from top
to bottom are the following: 0.76, 0.88, and 0.85.

121

5.4.3 Panda-Gym

Having presented the aggregated results on HiER, we present our results on the Panda-Gym
robotic benchmark with more details and task-specific results. Additionally, we demon-
strate how HiER+ with E2H-ISE can further improve the performance of HiER. From the
Panda-Gym robotic benchmark, three robotic manipulation tasks were considered:

• PandaPush-v3: A block needs to be pushed to a target. Both the block starting
position and the target position are within the reach of the robot.

• PandaSlide-v3: A puck needs to be slid to a target position outside of the reach of
the robot.

• PandaPickAndPlace-v3: A block needs to be moved to a target that is oftentimes
in the air thus the robot needs to grasp the block.

The starting position of the block (or the puck) and the goal position are sampled
from the corresponding distributions. For all three tasks, the state space consists of the
kinematic information of the block object and the gripper, and the position of the desired
goal. The action space represents the Cartesian displacement (dx, dy, and dz) of the
gripper and the closing and opening of the gripper. Regarding the PandaPush-v3 and
PandaSlide-v3 tasks, the state space S ⊂ R21 and the action space A ⊂ R3 (the gripper
is closed) while for the PandaPickAndPlace-v3 task, the state space S ⊂ R22 and the
action space A ⊂ R4. The reward function is sparse, as described in Eq. (2.10). The tasks
are depicted in Fig. 5.6. For further details, we refer the reader to [244] and [249].

The aggregated results are presented in Fig. 5.7, while the performance profiles of
the algorithms are demonstrated in Fig. 5.8. Our experimental results show that HiER
(blue) and both versions of HiER+ (purple and magenta) significantly outperform the
baselines (grey), while E2H-ISE alone could only slightly improve the performance. More-
over, Fig. 5.9 shows at least a 0.99 average probability of improvement for our methods
compared to the baselines.

Regarding the specific tasks, the learning curves of the selected configurations are de-
picted in Fig. 5.6. For all cases, HiER and HiER+ significantly outperform the baselines.
Moreover, Tab. 5.3 presents a simplified summary of the performance of the algorithms
on the specific tasks. Our results show that HiER [HER] enhances its baseline by an
increment of 0.03, 0.44, and 0.12 IQM score on the PandaPush-v3, PandaSlide-v3, and
PandaPickAndPlace-v3 tasks. Nevertheless, HiER+ [HER] further improves the perfor-
mance, achieving 1.0, 0.82, and 0.71 IQM scores. The detailed results for all configurations

122

are presented in Appendix E. Tab. E.1 displays the results based on success rate, while
Tab. E.2 shows the results based on rewards.

5.4.4 Gymnasium-Robotics Fetch

In this section, HiER is evaluated on the FetchPush-v2, FetchSlide-v2, and FetchPick-

AndPlace-v2 tasks of the MuJoCo-based Gymnasium-Robotics Fetch environment.

Even though the tasks are similar to the Panda-Gym robotic benchmark, the robot
configuration, the observation space, and the environment dynamic (different simulator)
are disparate. For all three tasks, the state space S ⊂ R28 consists of the kinematic
information of the block object and the gripper, and the position of the desired goal.
The action space A ⊂ R4 represents the Cartesian displacement (dx, dy, and dz) of the
gripper and the closing and opening of the gripper. Our goal with these experiments is to
demonstrate that HiER does not uniquely work for the Panda-Gym robotic benchmark.
The tasks are depicted in Fig. 5.10. For more details, we refer the reader to [245] and [250].

In this section, HiER and HiER [HER] are compared with their corresponding baselines.
Our experiment results are presented in Tab. 5.4 and depicted in Fig. 5.10 and Fig. 5.11.
In all cases, the HiER versions outperform their corresponding baselines. Regarding the
FetchPush-v2 task, HiER [HER] improves the IQM score of the Baseline [HER] method by
0.06 (increasing from 0.92 to 0.98). In the case of the FetchSlide-v2 task, HiER achieves
the best result with a 0.56 IQM score, yielding a 0.54 increase compared to its baseline with
0.02. Interestingly, adding HER worsens the performance. Nevertheless, HiER [HER] still
outperforms Baseline [HER]. Finally, for the FetchPickAndPlace-v2 task, HiER [HER]
achieves a 0.73 IQM score. Compared to the Baseline [HER] method with 0.24, it yields
a 0.49 improvement. Interesting to note that for the latter two tasks, both HiER versions
outperform both baselines.

5.4.5 Gymnasium-Robotics PointMaze

In this section, HiER is evaluated on the PointMazeWall-v3 and PointMaze-S-v3 tasks of
the MuJoCo-based Gymnasium-Robotics PointMaze environment to show the universality
of our approach in a fundamentally different problem.

In these tasks, a ball – placed in a 2D maze – needs to move from the start position to
the goal position in a continuous state and action space. The start and the target positions
are generated randomly with some constraints. For both tasks, the state space S ⊂ R6

consists of the x and y coordinates and velocities of the force-actuated green ball and the

123

Figure 5.6: Learning curves of HiER and HiER+ with E2H-ISE compared to the state-of-
the-art based on success rates on the push, slide, and pick-and-place tasks of the Panda-
Gym robotic benchmark with 95% CIs.

0.3 0.6 0.9
Baseline

Baseline [HER & PER]
E2H-ISE [HER & PER]

HiER [HER & PER]
HiER+ [HER & PER]

HiER+ [HER]
Mean

0.3 0.6 0.9

Median

0.3 0.6 0.9

IQM

0.3 0.6 0.9

Optimality Gap

Success rate score

Figure 5.7: Aggregate metrics on the push, slide, and pick-and-place tasks of the Panda-
Gym robotic benchmark with 95% CIs. HiER (blue) and both versions of HiER+ (purple
and magenta) significantly outperform the baselines (gray). E2H-ISE alone could slightly
improve the performance of the baseline.

124

0.0 0.2 0.4 0.6 0.8 1.0
Success rate score()

0.00

0.25

0.50

0.75

1.00
Fr

ac
tio

n
of

 ru
ns

 w
ith

 sc
or

e
>

HiER+ [HER]
HiER+ [HER & PER]
HiER [HER & PER]
E2H-ISE [HER & PER]
Baseline [HER & PER]
Baseline

Figure 5.8: Performance profiles (run-score distribution) on the push, slide, and pick-and-
place tasks of the Panda-Gym robotic benchmark with 95% CIs.

0.6 0.8 1.0
P(X > Y)

E2H-ISE [HER & PER]HiER [HER & PER]HiER+ [HER & PER]HiER+ [HER]E2H-ISE [HER & PER]HiER [HER & PER]HiER+ [HER & PER]HiER+ [HER]HiER+ [HER & PER]HiER+ [HER]HiER+ [HER]
Algorithm X

BaselineBaselineBaselineBaselineBaseline [HER & PER]Baseline [HER & PER]Baseline [HER & PER]Baseline [HER & PER]HiER [HER & PER]HiER [HER & PER]HiER+ [HER & PER]
Algorithm Y

Figure 5.9: Probability of improvement on the push, slide, and pick-and-place tasks of
the Panda-Gym robotic benchmark with 95% CIs. The average probabilities from top to
bottom: 0.625, 0.857, 0.86, 1.0, 1.0, 0.99, 0.99, 1.0, 1.0, and 1.0.

125

Table 5.3: Simplified summary of our results on the push, slide, and pick-and-place tasks of
the Panda-Gym robotic benchmark based on success rates. The column-wise best results
are marked in bold. The full table with all the configurations is presented in Tab. E.1.

PandaPush-v3 | PandaSlide-v3 | PandaPickAndPlace-v3
Mean ↑ Median ↑ IQM ↑

Baseline [HER] 0.97 | 0.38 | 0.27 0.98 | 0.37 | 0.28 0.97 | 0.37 | 0.27
HiER [HER] 1.00 | 0.79 | 0.39 1.00 | 0.81 | 0.39 1.00 | 0.81 | 0.39
HiER+ [HER] 1.00 | 0.83 | 0.69 1.00 | 0.81 | 0.74 1.00 | 0.82 | 0.71

OG ↓ Max ↑ STD ↓
Baseline [HER] 0.03 | 0.62 | 0.73 0.99 | 0.45 | 0.32 0.02 | 0.04 | 0.03
HiER [HER] 0.00 | 0.21 | 0.61 1.00 | 0.91 | 0.42 0.00 | 0.09 | 0.02
HiER+ [HER] 0.00 | 0.17 | 0.31 1.00 | 0.95 | 0.90 0.00 | 0.05 | 0.14

Figure 5.10: Learning curves of HiER compared with its baselines on push, slide, and
pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark with 95% CIs.

126

0.2 0.4 0.6
Baseline

HiER
Baseline [HER]

HiER [HER]
Mean

0.2 0.4 0.6

Median

0.2 0.4 0.6

IQM

0.4 0.6 0.8

Optimality Gap

Success rate score

Figure 5.11: Aggregate metrics on the push, slide, and pick-and-place tasks of the
Gymnasium-Robotics Fetch benchmark with 95% CIs. Both HiER (blue) and HiER [HER]
(magenta) significantly outperform the baselines (light blue and purple).

Table 5.4: HiER compared to the state-of-the-art based on success rates on push, slide,
and pick-and-place tasks of the Gymnasium-Robotics Fetch benchmark. The column-wise
best results are marked in bold.

FetchPush-v2 | FetchSlide-v2 | FetchPickAndPlace-v2

H
E
R

H
iE
R

Mean ↑ Median ↑ IQM ↑

Baselines
- - 0.12 | 0.02 | 0.08 0.12 | 0.02 | 0.08 0.12 | 0.02 | 0.08
✓- 0.92 | 0.23 | 0.24 0.93 | 0.22 | 0.23 0.92 | 0.22 | 0.24

HiER
- ✓ 0.76 | 0.56 | 0.32 0.93 | 0.55 | 0.17 0.83 | 0.56 | 0.26
✓✓ 0.98 | 0.35 | 0.73 0.99 | 0.36 | 0.77 0.98 | 0.36 | 0.73

OG ↓ Max ↑ STD ↓

Baselines
- - 0.88 | 0.98 | 0.92 0.14 | 0.04 | 0.10 0.01 | 0.01 | 0.01
✓- 0.08 | 0.77 | 0.76 0.98 | 0.39 | 0.30 0.05 | 0.07 | 0.04

HiER
- ✓ 0.24 | 0.44 | 0.68 1.00 | 0.80 | 0.76 0.29 | 0.13 | 0.22
✓✓ 0.02 | 0.65 | 0.27 1.00 | 0.39 | 0.93 0.02 | 0.03 | 0.14

127

x and y coordinates of the final goal ball (blue). The action space A ⊂ R2 represents
the linear force exerted on the green ball in the x and y directions. In addition, the ball
velocity is clipped in a range of [−5, 5] m/s to prevent that it grows unbounded. For more
details, we refer the reader to [246] and [251].

In our experiments, two different maze layouts were considered as depicted in Fig. 5.12.
The reward function is changed to Eq. (2.10). As the tasks take longer to execute, the
horizon is 500 timestep which is tenfold compared to the robotic manipulation tasks. Thus,
for these experiments, the discount factor γ was set to one17.

The results of our experiments are presented in Tab. 5.5 and depicted in Fig. 5.13. In
the case of the PointMaze-Wall-v3 task, the results are close to the optimal 1.0 success
rate, thus there is no significant difference, even though HiER still performs equally or
better than the baselines depending on the metrics and the configurations. Regarding the
more challenging PointMaze-S-v3 task, HiER [HER] outperforms Baseline [HER] by 0.2
IQM score, rising from 0.69 to 0.89.

5.4.6 Qualitative evaluation

In this section, the qualitative evaluation of the aforementioned tasks is presented. We
refer the reader to the project site18 to watch our results compared with the baselines.

Regarding the Panda-Gym and the Gymnasium-Robotics Fetch environment, on many
occasions, the baseline appears to be disoriented and incapable of completing the task. It
appears that, during the training process, the agent became entrapped in a local minimum
as a result of the challenging exploration problem caused by the continuous state and action
space, the sparse reward, and the lack of demonstrations. This phenomenon is significantly
less frequent in the case of HiER and HiER+ which solve the tasks with a considerably
higher success rate, in correlation with the presented quantitative evaluation.

In the case of the Gymnasium-Robotics PointMaze environment, the qualitative eval-
uation does not show relevant differences. The primary reason is that while the mean,
median, and IQM success rate score is considerably higher in the case of HiER [HER],
both HiER [HER] and Baseline [HER] managed to obtain a perfect success rate of 100%
at least once in the PointMaze environment (see Tab. 5.5).

17Not having a discount on future reward does not pose a problem as the reward function is formulated
with -1 reward in every timestep, described in Eq. (2.10). Thus, the agent aims to solve the task as fast
as possible.

18http://www.danielhorvath.eu/hier/#bookmark-qualitative-eval

128

http://www.danielhorvath.eu/hier/#bookmark-qualitative-eval

(a)
PointMaze-Wall-v3

(b) Layout of
PointMaze-Wall-v3

(c) PointMaze-S-v3 (d) Layout of
PointMaze-S-v3

Figure 5.12: The tasks of Gymnasium-Robotics PointMaze environment [246]. The mazes
were custom-made, thus we named them accordingly. The layouts (b) and (d) show the
placement of the walls and the possible start and target positions from a top view. The
environment is based on the MuJoCo simulator [188].

Figure 5.13: Learning curves of HiER compared with its baselines on the Gymnasium-
Robotics PointMaze environment with 95% CIs.

129

5.4.7 HiER λ, HiER ξ, and E2H-ISE c versions

The comparison of the different HiER λ methods are depicted in Fig. 5.14a and 5.14b
and Fig. 5.15. The experiments were executed without HER, PER, and E2H-ISE. In these
settings, the predefined λmethod outperforms the other variants, although its CI overlaps
the CI of the fix λ method. The λ profiles are presented in Fig. 5.14b.

The impact of HiER ξ method is shown in Fig. 5.14c and Fig. 5.16. The experiments
were executed with HER and E2H-ISE but without PER. In these settings, the fix ξ =
0.25, ξ = 0.5, and the prioritized ξ method appear to be the best versions in this order,
although their CIs overlap19. It is important to note, that when PER is active, it scales
the gradient proportionally to the probability of the samples, thus prioritized ξ mode is
recommended to counterbalance this effect.

The different E2H-ISE c methods are presented in Tab. 5.6 and displayed in Fig. 5.17.
The experiments were executed without PER. The ranking of E2H-ISE versions is relatively
sensible for the applied methods (HER and HiER). Without HiER, there is no significant
difference between the c methods. With HiER but without HER the control and the
control adaptive c methods yield the highest performance, although their CIs overlap
with the other versions. With HiER and HER, the control adaptive and self-paced

c methods achieve the best performance. Nevertheless, further optimization, or possibly
another version of E2H-ISE could improve the performance.

5.4.8 TD3 and DDPG

To validate our methods not only with SAC, Fig. 5.18 and Tab.5.7 show our results in the
case of DDPG and TD3. In both cases, HiER+ improved the results of the baseline. In the
case of TD3 (blue), the improvement is more significant as the CIs do not overlap. In the
case of DDPG (magenta), although there is a considerable improvement, the CIs overlap.

5.5 Conclusion

In this work, we introduced a novel technique called the highlight experience replay (HiER)
to facilitate the training of off-policy reinforcement learning agents in a robotic, sparse-
reward environment with continuous state and action spaces. Furthermore, the agent is

19In other settings, we found ξ = 0.5 slightly better than the others.

130

Table 5.5: HiER compared to the state-of-the-art based on success rates on the
Gymnasium-Robotics PointMaze environment. The column-wise best results are marked
in bold.

PointMaze-Wall-v3 | PointMaze-S-v3

H
E
R

H
iE
R

Mean ↑ Median ↑ IQM ↑

Baselines
- - 0.94 | 0.05 1.00 | 0.00 1.00 | 0.00
✓- 0.97 | 0.61 1.00 | 0.76 0.99 | 0.69

HiER
- ✓ 1.00 | 0.05 1.00 | 0.00 1.00 | 0.00
✓✓ 1.00 | 0.80 1.00 | 0.91 1.00 | 0.89

OG ↓ Max ↑ STD ↓

Baselines
- - 0.06 | 0.95 1.00 | 0.46 0.19 | 0.14
✓- 0.03 | 0.39 1.00 | 1.00 0.05 | 0.36

HiER
- ✓ 0.00 | 0.95 1.00 | 0.28 0.00 | 0.11
✓✓ 0.00 | 0.20 1.00 | 1.00 0.01 | 0.29

(a) The effect of HiER λ ver-
sions on the success rate.

(b) The change of λ values over
time.

(c) The effect of HiER ξ
methods. HiER λ is set to
predefined.

Figure 5.14: The analysis of HiER λ versions (a) and (b), and HiER ξ versions (c). ξ is
fixed at 0.5 for (a) and (b). HiER λ ama parameters: λ0 = −50, λmax = −10 M = 0 and
w = 20. The without version indicates that HiER was not used.

131

0.00 0.15 0.30
Baseline

Fix
Predefined

AMA
Mean

0.00 0.15 0.30

Median

0.00 0.15 0.30

IQM

0.75 0.90

Optimality Gap

Success rate score

Figure 5.15: Comparison of different HiER λ methods on the slide task of the Panda-Gym
benchmark with 95% CIs. The predefined λ method is seemingly superior, although the
CIs with the fix λ method overlap. HiER λ ama parameters: λ0 = −50, λmax = −10
M = 0 and w = 20. The profiles of HiER λ are depicted on Fig. 5.14 (b).

0.6 0.8
Fix 0.1

Fix 0.25
Fix 0.5

Fix 0.75
Fix 0.9

Prioritized
Mean

0.6 0.8

Median

0.6 0.8

IQM

0.2 0.4

Optimality Gap

Success rate score

Figure 5.16: Comparison of different HiER ξ methods on the slide task of the Panda-Gym
benchmark with 95% CIs. The fix ξ = 0.25, ξ = 0.5, and the prioritized appear to be
the best versions in this order, although their CIs overlap.

0.6 0.8
Predefined
Self-paced

Control
Control adaptive

Predefined [HER]
Self-paced [HER]

Control [HER]
Control adaptive [HER]

Predefined [HiER]
Self-paced [HiER]

Control [HiER]
Control adaptive [HiER]

Predefined [HiER + HER]
Self-paced [HiER + HER]

Control [HiER + HER]
Control adaptive [HiER + HER]

Mean

0.6 0.8

Median

0.6 0.8

IQM

0.2 0.4 0.6

Optimality Gap

Success rate score

Figure 5.17: Comparison of different E2H-ISE c methods on the slide task of the Panda-
Gym benchmark with 95% CIs. The parameters of the methods and the point estimates
are presented in Tab. 5.6.

132

T
ab

le
5.
6:

T
h
e
eff

ec
t
of

th
e
E
2H

-I
S
E
c
m
et
h
o
d
s
on

th
e
su
cc
es
s
ra
te
s
on

th
e
P
a
n
d
a
S
l
i
d
e
-
v
3
ta
sk
.
H
iE
R

p
ar
am

et
er
s:
λ
m
o
d
e
p
r
e
d
e
f
i
n
e
d
an

d
ξ
f
i
x
w
it
h
ξ
=

0.
5.

E
2H

-I
S
E

p
ar
am

et
er
s:

s
e
l
f
-
p
a
c
e
d
Ψ

lo
w
=

0.
2,

Ψ
h
ig
h
=

0.
8
an

d
δ
=

0.
05
;
c
o
n
t
r
o
l
:
ψ

=
0.
8
an

d
δ
=

0.
01
;
c
o
n
t
r
o
l
a
d
a
p
t
i
v
e
:
∆

=
0.
2,
ψ
m
a
x
=

0.
9,

an
d

δ
=

0.
01
.
T
h
e
ro
w
-w

is
e
b
es
t
re
su
lt
s
ar
e
m
ar
ke
d
in

b
ol
d
.

C
o
m
p
o
n
en
ts

p
r
e
d
e
f
i
n
e
d

s
e
l
f
-
p
a
c
e
d

c
o
n
t
r
o
l

c
o
n
t
r
o
l
a
d
a
p
t
i
v
e

H
E
R

H
iE
R

M
a
x
↑

M
ea
n
↑

S
T
D
↓

M
ax
↑

M
ea
n
↑

S
T
D
↓

M
ax
↑

M
ea
n
↑

S
T
D
↓

M
ax
↑

M
ea
n
↑

S
T
D
↓

-
-

0
.5
2

0
.4
6

0.
03

0.
46

0.
43

0.
02

0.
46

0
.4
4

0
.0
2

0
.5
1

0
.4
5

0
.0
3

✓
-

0
.4
9

0.
46

0.
03

0
.5
4

0.
45

0.
03

0.
53

0
.4
7

0.
0
4

0
.5
4

0
.4
5

0
.0
4

-
✓

0
.6
3

0.
50

0.
06

0.
69

0.
49

0.
07

0
.9
5

0
.5
7

0
.1
7

0
.9
0

0
.5
5

0
.1
4

✓
✓

0
.8
5

0.
71

0.
08

0
.9
0

0
.8
1

0.
06

0.
87

0
.7
0

0
.0
8

0
.9
0

0
.8
0

0
.0
5

133

0.30 0.45 0.60
TD3 Baseline

TD3 HiER+
DDPG Baseline

DDPG HiER+
Mean

0.30 0.45 0.60

Median

0.2 0.4 0.6

IQM

0.45 0.60 0.75

Optimality Gap

Success rate score

Figure 5.18: Comparison of the TD3 and DDPG versions of HiER+ with their baselines
on the push, slide, and pick-and-place tasks of the Panda-Gym benchmark with 95% CIs.
The point estimates are presented in Tab. 5.7.

Table 5.7: HiER+ compared to the state-of-the-art based on success rates on the Panda-
Gym robotic benchmark in the case of TD3 and DDPG. The column-wise best results for
TD3 and DDPG separately are marked in bold.

PandaPush-v3 | PandaSlide-v3 | PandaPickAndPlace-v3
RL Algorithm Mean ↑ Median ↑ IQM ↑

DDPG
Baseline 0.25 | 0.56 | 0.08 0.23 | 0.56 | 0.08 0.24 | 0.56 | 0.08
HiER+ 0.43 | 0.63 | 0.13 0.32 | 0.68 | 0.12 0.38 | 0.68 | 0.12

TD3
Baseline 0.40 | 0.27 | 0.09 0.28 | 0.36 | 0.09 0.36 | 0.30 | 0.09
HiER+ 0.93 | 0.53 | 0.28 0.94 | 0.56 | 0.30 0.94 | 0.54 | 0.29

OG ↓ Max ↑ STD ↓

DDPG
Baseline 0.75 | 0.44 | 0.92 0.42 | 0.74 | 0.11 0.08 | 0.11 | 0.01
HiER+ 0.57 | 0.37 | 0.87 0.91 | 0.83 | 0.20 0.27 | 0.22 | 0.03

TD3
Baseline 0.60 | 0.73 | 0.91 0.86 | 0.44 | 0.11 0.28 | 0.16 | 0.01
HiER+ 0.07 | 0.47 | 0.72 0.99 | 0.63 | 0.35 0.04 | 0.08 | 0.05

134

devoid of access to any form of demonstration. These constraints, significantly exacerbate
the difficulty of exploration.

In our method, a secondary replay buffer is created to store the most relevant expe-
riences based on some criteria. At training, the transitions are sampled from both the
standard experience replay buffer and the highlight experience replay buffer. Similarly
to the hindsight experience replay (HER) and prioritized experience replay (PER), HiER
can be added to any off-policy reinforcement learning algorithm. Following [97], HiER is
classified as a data exploitation (or implicit) curriculum learning method.

To demonstrate the universality of HiER, it was validated on 8 tasks of three different
robotics benchmarks [244]–[246] based on two different simulators [188], [192]. On one
hand, among the 8 tasks, 3-3 were the same in principle (push, slide, and pick-and-place)
but the robot configurations, the state spaces, and the dynamics of the environments were
disparate. On the other hand, the last 2 tasks were fundamentally different as a ball needed
to find a target in different mazes.

In all of the experiments, HiER significantly improved the state-of-the-art methods.
Our experimental results show that HiER is especially beneficial in hard-to-solve tasks
such as PandaSlide-v3, FetchPickAndPlace-v2, or PointMaze-S-v3.

HiER collects and stores positive experiences to improve the training process. With
HiER+, we showed how HiER can benefit from a traditional, data collection curriculum
learning method. Lack of general and easy-to-implement solutions, we proposed E2H-
ISE, an easy2hard data collection CL method that requires minimal prior knowledge and
controls the entropy of the initial state-goal distributionH(µ0) which indirectly controls the
task difficulty. Nevertheless, applying more sophisticated CL methods in place of E2H-ISE
might be beneficial in future research.

HiER+ was validated on the PandaPush-v3, PandaSlide-v3, and PandaPickAnd-

Place-v3 tasks of the Panda-Gym [244] robotic benchmark. Our results show that HiER+
could further improve the performance of HiER.

Furthermore, we presented our experiments on the different λ, ξ, and c methods of
HiER and E2H-ISE. On one hand, we found that in the case of HiER λ, the predefined

version was superior. On the other hand, the rankings of the ξ and c methods are more
unambiguous and depend on the applied configuration. We also showed that HiER+
improves the baselines not only with SAC but with TD3 and DDPG as well.

Additionally, the qualitative analysis revealed that HiER and HiER+ showed a reduced
tendency to be trapped in local minima compared to the vanilla baseline methods.

Based on the findings presented in this chapter, our theses connected to the third

135

research question regarding improving state-of-the-art reinforcement learning algorithms
with curriculum learning are as follows:

Thesis V: Our novel highlight experience replay (HiER) method en-
hances the training of reinforcement learning agents by separately stor-
ing and replaying the most relevant experiences, leading to a significant
improvement in state-of-the-art performance.

Inspired by human learning, we propose HiER, the highlight experience
replay method. A secondary experience replay buffer is created to store
the most relevant transitions. At training, the transitions are sampled
from both the standard experience replay buffer and the highlight experi-
ence replay buffer. It can be added to any off-policy RL agent and applied
with or without the techniques of hindsight experience replay (HER) and
prioritized experience replay (PER). HiER is depicted in Fig. 5.1 and
detailed in Algorithm 1. If only positive experiences are stored in its
buffer, HiER can be viewed as a special, automatic demonstration gen-
erator as well. HiER is classified as a data exploitation or implicit cur-
riculum learning method. HiER significantly improves the performance
of RL baselines, having stochastic dominance over the state-of-the-art,
validated on 8 tasks of three robotic benchmarks. This thesis is associ-
ated with [2].

Thesis VI: Our novel HiER+ approach enhances our highlight expe-
rience replay (HiER) method by increasing the availability of positive
experiences – achieved through controlling task difficulty – particularly
during the early stages of the training.

We propose HiER+ which is an enhancement of HiER with an ar-
bitrary data collection (traditional) curriculum learning method. The
overview of HiER+ is depicted in Fig.5.1 and detailed in Algorithm 2.
Furthermore, as an example of the data collection CL method, we pro-
pose E2H-ISE, a universal, easy-to-implement easy2hard data collection
CL method that requires minimal prior knowledge and controls the initial
state-goal entropy (ISE) distribution H(µ0) which indirectly controls the
task difficulty. Our experimental results show that HiER+ further im-
proves HiER’s performance. Moreover, HiER+ demonstrates stochastic
dominance over HiER, based on the results from three robotic tasks of
the Panda-Gym benchmark. This thesis is associated with [2].

136

Chapter 6
Conclusions

Contents
6.1 Summary of thesis achievements 138

6.2 Future work . 139

137

6.1 Summary of thesis achievements

As outlined in Section 1.3, the thesis is focused on three main research topics:

• How to transfer knowledge from simulation to the real world in the case
of object detection? This research question is associated with our work in [1],
where we designed a sim2real transfer learning method based on domain random-
ization for object detection (S2R-ObjDet) with which labelled synthetic datasets of
arbitrary size and object types can be automatically generated. Subsequently, an
object detection model is trained to detect the different types of industrial objects.
With the proposed domain randomization method, we could shrink the reality gap
to a satisfactory level, achieving 86.32% and 97.38% mAP50 scores respectively in
the case of zero-shot and one-shot transfers, on our manually annotated and public
dataset containing 190 real images of 920 objects (InO-10-190). Our solution fits for
industrial use as the data generation process takes less than 0.5 s per image and the
training lasts only around 12 h, on a GeForce RTX 2080 Ti GPU. Furthermore, it
can reliably differentiate similar classes of objects by having access to only one real
image for training. To our best knowledge, this was the first work satisfying these
constraints. Moreover, we proposed the generalised confusion matrix (GCM) which
is an adaptation of the traditional confusion matrix to object detection. It offers
a solution to the shortcomings of the classical precision-recall-based mAP and F1

score. With GCM, the misclassification error can be quantified and evaluated. For a
short presentation and additional materials, we refer the reader to the project page
https://www.danielhorvath.eu/sim2real.

• How to extend our S2R-ObjDet method to multi-object grasp pose esti-
mation? This research question relates to our work in [4], where we propose two
vision-based, multi-object grasp pose estimation models (MOGPE) – the real-time
MOGPE-RT and the high-precision MOGPE-HP – that enable a modular train-
ing approach for multi-object grasp pose estimation by utilizing sequential phases
of object detection and class-specific orientation estimation. Moreover, with the
S2R-PosEst method – an extension of our S2R-ObjDet approach – we can automat-
ically generate synthetic data for orientation estimation. Our methods yielded an
80% and a 96.67% success rate in a real-world robotic pick-and-place experiment,
with the MOGPE-RT and the MOGPE-HP model respectively, using only limited
real-world data. Our framework provides an industrial tool for fast data generation
and model training and requires minimal data from the target distribution. For a
short presentation and additional materials, we refer the reader to the project page
https://www.danielhorvath.eu/mogpe.

138

https://www.danielhorvath.eu/sim2real
https://www.danielhorvath.eu/mogpe

• How to improve the training process of state-of-the-art reinforcement
learning algorithms with curriculum learning? This research question is con-
nected to our work in [2], where we proposed a data exploitation curriculum learning
method, named the highlight experience replay (HiER) that creates a secondary
highlight replay buffer for the most relevant experiences. For the weights update,
the transitions are sampled from both the standard and the highlight experience
replay buffer. It can be applied with or without the techniques of hindsight expe-
rience replay (HER) and prioritized experience replay (PER). Our method signifi-
cantly improves the performance of the state-of-the-art, validated on 8 tasks of three
robotic benchmarks. Furthermore, to exploit the full potential of HiER, we proposed
HiER+ in which HiER is enhanced with an arbitrary data collection curriculum
learning method. Furthermore, as an example of the data collection CL method,
we introduced E2H-ISE, a universal, easy-to-implement easy2hard data collection
CL method that requires minimal prior knowledge and controls the initial state-goal
entropy (ISE) distribution H(µ0) which indirectly controls the task difficulty. Our
implementation, the qualitative results, and a video presentation are available on the
project site: http://www.danielhorvath.eu/hier/

6.2 Future work

In future work, several intriguing ideas merit exploration. The most relevant among them
are as follows:

• How can HiER contribute to knowledge transfer? We demonstrated how
HiER is beneficial in learning different robotic tasks. Nevertheless, it is worth explor-
ing, how HiER can contribute to knowledge transfer. We are particularly interested
in training two RL agents parallelly in simulation and the real world with creating a
shared highlight buffer.

• Can HiER be beneficial for multi-agent RL training? In another line of
research, HiER might be utilised in multi-agent RL training. In this scenario, instead
of one RL agent, multiple RL agents are trained (in parallel) and combined in the hope
of converging to a better solution. Prior to HiER, we conducted some experiments
on this topic, although as our preliminary results did not show any improvement, we
abandoned the idea. However, HiER might be able to connect these agents and thus
aid their training.

139

http://www.danielhorvath.eu/hier/

• Could low-reward episodes also contribute to RL training with HiER?
Low-reward episodes might be useful in learning to avoid undesirable behaviour,
especially in the presence of failure states. An interesting line of research would be
to either include them in HiER by changing HiER’s storing condition or to dedicate
an additional experience replay buffer to these episodes.

• Is it possible to extend the S2R-ObjDet and the S2R-PosEst methods
to feature detection? Our S2R-ObjDet and S2R-PosEst methods are tailored to
robotic manipulation tasks where the poses of specific objects need to be detected.
Nevertheless, there are other types of robotic tasks, where specific features or refer-
ence points must be found in order to position the robot itself, e.g., finding reference
points on printed circuit boards for precise positioning. Creating synthetic train-
ing data could be beneficial for such applications. Expanding our data generation
methods for feature detection would offer a solution to the needs of the electronics
industry or medical robotics.

• Is it possible to increase the performance of sim2real knowledge trans-
fer based on the feedback of the generalised confusion matrix (GCM)?
Our generalised confusion matrix (GCM) was proven to be beneficial for detecting
misclassification, false positives, and false negatives in object detection. This infor-
mation could also utilised not only for evaluation but for the training process as
well. It is important to note, that it could work only if the misclassifications happen
among the synthetic images as well – error from the test dataset cannot be used for
training. Even though it appears that the misclassification error is due to the knowl-
edge transfer, detecting them in the synthetic domain could significantly facilitate
the knowledge transfer by actively modifying the synthetic training dataset. It could
be a form of adversarial training or automatic curriculum learning.

• How would the S2R-ObjDet and the S2R-PosEst methods perform in
scenarios with significant occlusions? Validating the S2R-ObjDet and S2R-
PosEst methods in scenarios with significant occlusions were out of the scope of this
research. Therefore, it would be valuable to conduct additional experiments to assess
their performance in such scenarios.

• Is it possible to increase the performance of sim2real knowledge transfer
with textual scene description? The textual representation of the scene could
provide a shared contextual space between simulation and reality, aiding the knowl-
edge transfer. A large language model (LLM) could be employed to generate these
descriptions, and through multimodal learning, a visual-language model (VLM) [255]
could be trained to establish the necessary mapping.

140

APPENDICES

141

Appendix A
Machine learning

A.1 Context

Given the lack of a universally accepted definition for human or artificial intelligence, their
meanings remain relatively vague, which fuels the scientific debate around them. In this
Appendix, we aim to briefly clarify the field and certain subfields of AI, as the terminology
is often misused, even in scientific discussions. For moral dilemmas and on the ethical use
of AI, we refer the reader to [256], and the European Union Artificial Intelligence Act [257].

Following Russel and Norvig [258], the definitions of AI can be grouped into four schools
of thought along two dimensions, presented in Tab. A.1. In this thesis, following [258], we
concentrate on the acting rationally approach.

As the definitions show, the field of AI is overly general. Thus, it is beneficial to cate-
gorise them into rule-based and (machine-)learning-based (ML) methods. The latter is also
referred to as data-driven methods. Instead of explicitly programming them, ML focuses
on developing methods that can learn from data. Commonly, an ML pipeline involves
data collection, data preprocessing, model selection, training, validation, hyperparameter
tuning, testing, and deployment.

In traditional or shallow ML, the feature selection is performed by an expert, mean-
ing that the relevant input features are selected and transformed for the ML algorithm.
However, in many cases, feature selection is the most challenging aspect of the problem.
Deep learning (DL) is a subset of ML where the features of different abstraction levels are
learned hierarchically, typically with a deep neural network (DNN). The landscape of AI
is depicted in Fig. A.1.

142

Table A.1: Some definitions of artificial intelligence, organised into four schools of thought
from [258].

Thinking Humanly: The Turing
Test approach. E.g., ’[The automation
of] activities that we associate with hu-
man thinking, activities such as decision-
making, problem-solving, learning...’ [259]

Thinking Rationally: The ’laws of
thought’ approach. E.g., ’The study of
mental faculties through the use of compu-
tational models.’ [260]

Acting Humanly: The cognitive mod-
eling approach. E.g., ’The art of creating
machines that perform functions that re-
quire intelligence when performed by peo-
ple.’ [261]

Acting Rationally: The rational
agent approach. E.g., “Computational
Intelligence is the study of the design of in-
telligent agents.” [262]

Figure A.1: Field of artificial intelligence, following [108].

A.2 Formulation

There are three fundamentally different branches of machine learning: supervised, unsu-
pervised, and reinforcement learning.

In supervised learning, the algorithm learns from labelled data, meaning that the train-
ing data consists of input-output (x-y) pairs. The labelled output is also referred to as the
ground-truth (GT) or the target values. The aim is to find the true mapping from input x
to the output y as f ∗(x) = y. The training dataset (xtrain,ytrain) should be independent
and identically distributed (i.i.d.) and representative for the validation/test scenario. Ca-
pacity (the ability to fit a wide variety of functions) is an important aspect of ML methods.
When the model’s capacity is insufficiently low, the model struggles to approximate the

143

training set (underfitting). On the other hand, models with high capacity can learn the
noise of the training data by memorising the training data points (overfitting), causing a
gap between the training and validation results. Overfitting is a perpetual problem of DL
models. Supervised learning problems can be categorised as classification or regression. In
the former, the input is classified into classes, while in the latter, the target value(s) is/are
real number(s).

Unsupervised learning algorithms learn patterns and structures from unlabelled data.
This means that the ground truth (ytrain) is not provided for the training, only xtrain.
Unsupervised learning can be applied to find the underlying (lower-level) structure of the
data (e.g., principal component analysis) or perform a preprocessing step for supervised
learning algorithms. Additionally, feature extraction or data normalization can be two
other applications of unsupervised learning.

Reinforcement learning is formalised with a Markov decision process (MDP) where
an agent interacts with an environment, trying to maximise its reward (received from
the environment). Even though reinforcement learning shares similarities with supervised
learning, the main differences are 1.) the challenge of delayed reward, 2.) the dilemma
of exploration and exploitation, and 3.) that the training data is generated by the agent,
thus it is not i.i.d. Reinforcement learning is introduced in detail in Section 2.3.

A.3 Neural networks

Artificial neural networks or neural networks (NNs) are a class of fundamental ML models,
inspired by the human brain. In general, the goal of NNs is to approximate some function
f ∗. A neural network is formulated as y = f(x;θ), where θ is the learnable parameter
vector of the NN. Structurally, NNs consist of interconnected nodes, called (artificial)
neurons, structured in layers. The outputs of the neurons in a layer are passed to the
inputs of the neurons in the next layer1.

Artificial neurons are computing system, described as y = g
(
xTw

)
where x ∈ Rn is

the input vector, y ∈ R is the output, w ∈ Rn is the trainable weight vector, and g : R→ R
is a non-linear activation function. The non-linear activation function is essential to solve
non-linear function approximations, e.g., XOR problem. Common activation functions are
the sigmoid, the hyperbolic tangent, and the rectified linear unit (ReLU) along with its
variations.

1Here, for simplicity, feedforward networks are presented.

144

Multilayer perceptron (MLPs) are a set of neurons structured into a network where the
input of a layer is the output of the previous layer. The first and the last layers are called,
the input and output layers, while the layers between them are called hidden layers. From
another point of view, a layer in an MLP is function f : Rn → Rm, where the n-dimensional
input vector is (x1, x2, . . . , xn) and the m-dimensional output vector is (y1, y2, . . . , ym).
When the layers are connected sequentially, the resulting function is formulated as f(x) =
f (3)(f (2)(f (1)(x))), in the case of 3 layers, where f (i) is the function of the ith layer. In
essence, the universal approximation theorem states that a feedforward neural network
with a single hidden layer and sufficient neurons can approximate any continuous function
on a compact domain, given appropriate weights and activation functions [108].

When training MLPs, the error signal is derived from the problem-specific loss function.
The gradient is computed using backpropagation, which relies on the chain rule of calculus.
Subsequently, the weight update is controlled by some version of the stochastic gradient
descent (SGD) algorithm.

In parallel with writing this work, Liu et al. [263] proposed the Kolmogorov-Arnold
networks (KANs), a promising alternative to MLPs. Contrary to MLPs, KANs are not
based on the universal approximation theorem but the Kolmogorov-Arnold representation
theorem [264] which states – in essence – that any multivariate continuous function can
be represented as a finite sum of univariate continuous functions and their compositions,
under specific conditions. In consequence, in KAN, the linear weights of MLPs are replaced
with spline-based learnable univariate functions on the edges of the network and the nodes
became additions (without any non-linear activation). Nevertheless, in this work, the term
NN hereafter refers specifically to MLPs.

A.4 Deep learning

To exploit the potential of NNs, it is beneficial to increase their capacity by introducing
more nodes in the network. Increasing the depth (number of hidden layers) is superior to
increasing the width (number of neurons per layer) as it enables the NN to learn complex
concepts by building on top of simple ones. Thus, the model learns a hierarchical represen-
tation of the input data. This strategy is referred to as deep learning, and with it, complex
functions can be approximated. E.g., the feature selection can be automatised in computer
vision applications, the first layers might learn low-level edge detection, then subsequent
layers detect corners and shapes, and finally, the layers at the end learn high-level features
such as face recognition.

145

“This [deep learning] solution is to allow computers to learn from experience and un-
derstand the world in terms of a hierarchy of concepts, with each concept defined through
its relation to simpler concepts.” [108]

As DL models, in general, have significantly higher capacity than needed for their
problems, there is a high risk of overfitting the training data which could lead to inferior
generalization. The main idea is to allow high capacity and apply various methods to avoid
overfitting, e.g., parameter regularization when an extra term is added to the loss function
controlling the magnitude of the weight vector or the technique of dropout when neurons
are randomly turned deactivated during the training process.

146

Appendix B
Control theory and reinforcement learning

Reinforcement learning and control theory are closely related fields, as both aim to develop
agents (controllers) that make decisions to optimize performance over time. Control theory
traditionally focuses on designing controllers to regulate dynamic systems (like robots or
vehicles) by minimizing deviations from a desired trajectory, using models to predict and
correct errors in real time. On the other hand, an RL agent learns from interactions with
the environment gathered through trial-and-error, maximizing its rewards, often without
prior knowledge of the system dynamics. Generally, both control theory and RL formulate
the problem as closed-loop control based on feedback from the environment. This appendix
is based on [265].

As the terms and their formulations are different in control theory and RL, Tab. B.1
shows a comparison of key terms and their formulations. It is important to note that,
we have preserved the original notations from the literature: terms from control theory
are shown in bold to indicate their vector nature, while terms from reinforcement learning
remain non-bold.

In control theory, a nonlinear, discrete-time dynamical system is generally considered,
represented as in Eq. (B.1).

xk+1 = fk(xk,uk,wk), (B.1)

where k ∈ N is the discrete-time index, xk ∈ X is the state of state space X , uk ∈ U is
the input1 of input space U , wk ∈ W is the process noise, and fk is the dynamic model of

1It is important to note, as it takes a model-based approach, the robot action is called input.

147

Table B.1: Comparison of the most relevant terms and their formulations of control theory
and reinforcement learning.

Control theory Reinforcement learning
Term Formulation Term Formulation
State x ∈ X State s ∈ S
Input u ∈ U Action a ∈ A
Process noise w ∈ W
Cost l : X × U → R Reward r : S ×A → R
System model f(x,u,w) Transition prob. p(s′, r | s, a)
Prior sys. model f̄(x,u)

Model uncertainty f̂(xk,u,w)

the robot. In addition, f is traditionally decomposed into a component representing prior
knowledge and an unknown component as in Eq. (B.2).

fk(xk,uk,wk) = f̄k(xk,uk) + f̂k(xk,uk,wk), (B.2)

where f̄ is the prior dynamics model and f̂ represents the uncertain dynamics. A general
assumption is that f̄ and f̂ are Lipschitz continuous – meaning that a bounded change in
input results a bounded change in output – helping in ensuring that solutions to the system
do not diverge uncontrollably. According to this formulation, control theory leverages our
prior knowledge and the data collected from the system to find an optimal controller. For
analyzing and ensuring the stability of the control system, the Lyapunov functions are
often utilized. A Lyapunov function is a scalar function V L(x) which maps the system’s
states to non-negative energy-like values typically satisfying V L(x) > 0 for all x ̸= 0 and
V L(0) = 0. The Lyapunov function represents how far is the system from the equilibrium.
The system moves towards or remains at equilibrium rather than diverging if V̇ L(x) ≤ 0
(Lyapunov stability). For asymptotic stability, V̇ L(x) < 0 for all x ̸= 0 ensuring that the
system state will eventually return to the equilibrium.

On the other hand, in RL, the time index is usually annotated with t, the state with
st ∈ S, the action (input) with at ∈ A, and the transition function (system model) with
p(s′, r | s, a). RL tackles the problem with sequential decision-making in a Markov decision
process (MDP) under uncertainty. Opposite to traditional control theory, RL generally
does not rely on the priory system model f̄ (the knowledge of the transition function). The
RL agent directly interacts with the environment (f) by initially sampling random actions
(inputs) in an attempt to find the optimal policy (controller). The detailed description of
the RL formalisation is presented in Section 2.3 and Appendix D.

148

The optimisation is based on the cost function l : X × U → R (control theory) or the
reward function r : S × A → R (RL). The main difference between them is that the cost
function is usually to be minimized while the reward function is to be maximized.

As it is apparent from the formalization, control theory takes a model-driven approach
while RL attempts to tackle the same problem with a data-driven approach. Furthermore,
while traditional control theory focuses on minimizing immediate deviations from a de-
sired state, RL is oriented toward maximizing long-term rewards, making it versatile for
applications where outcomes unfold over time. Nevertheless, alternative advanced control
methods – such as model predictive control (MPC) – optimize the control of dynamic pro-
cesses over a given time horizon, predicting future states by modelling the behaviour of
the system and solving an optimization problem at each control step [266]. As a result of
recent trends such as MPC and the introduction of more data-driven solutions to control
theory, the boundary between the fields of control theory and RL has become less distinct.

149

Appendix C
Safe reinforcement learning

A key challenge of learning in robotics is the guarantee of the safety of the robot’s be-
haviour. The robot must avoid causing harm to its surroundings – especially when there is
human presence – and should also protect itself from potential hardware failures. The most
significant obstacle to industrial use of RL algorithms is their safety guarantees. Therefore,
this Appendix presents some research directions on safe learning. For a more comprehen-
sive review, readers are encouraged to consult survey articles, such as [265], which served
as the foundation for this Appendix.

The safety guarantees are derived from the assumptions and structure embodied in the
problem formalization. Recent works addressing safe learning in robotics can be grouped
into the fields of control theory and reinforcement learning, although their boundaries are
becoming increasingly blurred, as discussed in Appendix B. Traditionally, the former takes
a model-driven approach while the latter attempts to tackle the same problem with a
data-driven approach – depcted on Fig. C.1 [265].

In order to ensure safe operation, safety constraints are introduced which might include:

• State constraints. Xc ⊂ X (control theory) or Sc ⊂ S (RL).

• Input or action constraints. Uc ⊂ U (control theory) or Ac ⊂ A (RL).

• Other stability guarantees.

The safety constraints might be defined with nc constraints functions ck(xk,uk,wk) ∈ Rnc .
Brunke et al. [265] defines three levels of constraints: soft (safety level I), probabilistic
(safety level II), and hard (safety level III) – depicted in Fig. C.2.

150

Figure C.1: A comparison of model-driven, data-driven, and combined approaches
from [265].

In control theory, a typical assumption is that a prior model of the system is available.
In adaptive control the controller parameters are modified online based on observed system
behaviour. In robust control – such as H2 and H∞ methods – the aim is to find a suit-
able controller for all possible disturbances (assuming the worst-case scenario). In robust
control, having the initial design, the controller is kept unchanged [267]. Model predictive
control (MPC) optimize the control of dynamic processes over a given time horizon, pre-
dicting future states by modelling the behaviour of the system and solving an optimization
problem at each control step. Robust MPC ensures state and input constraints xk ∈ X
and uk ∈ U , for all possible bounded disturbance. It solves a constrained optimization
problem over a control input sequence and applies the first optimal control input to the
system [266]. A typical approach in robust MPC is the tube-based MPC [268].

On the other hand, most state-of-the-art RL algorithms in robotics are generally model-
free meaning that they do not have any prior knowledge of the system dynamics (transition
probability function). In RL, constrained MDPs (CMDPs) [269] or robust MDPs [270] can
be utilized to add safety constraint to traditional MDPs. The objective of a traditional
RL agent in an MDP is to optimize the discounted reward which is noted as Gdisc

t in the
main text. However, to emphasize its dependence on the policy, here, it is noted as J (π)

151

Figure C.2: Safety levels from [265].

and formulated as in Eq. (C.1).

J (π) = Eτ∼π

[
∞∑
t=0

γtr(st, at, st+1)

]
(C.1)

The formulation of a constrained CMDPs extend traditional MDPs (S,A, r, γ, p, µ0)
with a set of cost functions, C1, C2, . . ., Cn where Ci : S ×A×S → R. The set of feasible
stationary policies for CMDP is then defined as in Eq. (C.2).

ΠC = {π ∈ Π | ∀i,JCi
(π) ≤ di}, (C.2)

where di ∈ R. In CMDP, the objective is formulated as in Eq. (C.3).

max
θ
J (πθ), s.t. πθ ∈ ΠC (C.3)

State-wise constrained Markov decision process (SCMDP) [271] is a special type of
CMDP and requires the cost for every state action transition to satisfy a hard constraint
as described in Eq. (C.4).

ΠSC = {π ∈ Π | ∀(st, at, st+1) ∼ τ, ∀i, Ci(st, at, st+1) ≤ wi}, (C.4)

where wi ∈ R. The optimization problem is as in Eq. (C.5).

max
θ
J (πθ), s.t. πθ ∈ ΠSC (C.5)

152

Dalal et al. [272] – while applying a SCMDP – add a safety layer to analytically correct
the actions of a policy. Each safety signal Ci is approximated with a linear model, thus
their value of the next state can be computed and the action can be corrected before it is
taken.

In another line of research, a safety critic is learnt which is an action-value function
Qπ

safe predicting if a proposed action can lead to unsafe conditions [273]–[275]. Srinivasan
et al. [273] propose safety Q-functions for reinforcement learning (SQRL) in which a critic
is learnt that evaluates whether a state-action pair leads to unsafe behaviour, under a
policy that is constrained by the safety-critic itself. This approach attempts to improve
universality compared to manually programmed safety constraints. In their method –
depicted on Fig. C.3 – the task-agnostic models of safety are learnt first, in controlled
pre-training – akin to children learning to walk – and then use these models when learning
new tasks – e.g, running. In the pre-training phase, the agent is allowed to explore and learn
about unsafe behaviours (“an agent can more safely learn to drive a car if it already knows
how to avoid collisions” [273]) while the safety-critic and the policy are trained in parallel.
In the fine-tuning phase, the policy is constrained by the safety critic. Thananjeyan et
al [275] propose the recovery RL method which balances the task performance and safety
by separating a task and a recovery policy. The agent follows the task policy unless it
is unsafe. Safety is based on critic Qπ

safe that is pre-trained on offline data – depicted in
Fig. C.4.

Figure C.3: The SQRL approach from [273].

153

Figure C.4: The recovery RL approach from [275].

Wabersich et al. [276] introduced a model predictive safety certification (MPSC) for
linear systems, which was later extended to non-linear systems with continuous state and
input (action) spaces in [277], [278]. They propose the MPC-based predictive safety fil-
ter (PSF) method [278] which transforms safety-critical systems into safe systems – de-
picted in Fig. C.5. Compared to traditional MPC, the PSF verifies the input (action)
proposed by the agent and modifies (filters) it – as little as possible – if it is necessary
to ensure safe operation. It is worth mentioning that the method can be utilized with
arbitrary RL algorithms or even with human agents (e.g., as a driving assistant). Their
method provides safety certificates for RL algorithms. In their formulation: “a learning-
based input action is certified as safe if it leads to a safe state, i.e., a state for which a
potentially low-performance, but online computable and safe backup controller exists for
all future times.” [277].

Figure C.5: The predictive safety filter from [278].

154

Finally, a remaining issue is when to enforce safety assurance. Following [271], there
are three main cases depicted in Fig. C.6. When we only need the model to converge to
a safe policy, soft constraints might be sufficient as there is no need for hard constraints
throughout the training – e.g., the robot is trained in a simulator before real-world deploy-
ment. On the other hand, there are cases when the soft constraints are not sufficient – e.g.,
real-world training. In these scenarios, either having fixed hard constraints or starting from
a set of safe states (and actions) and gradually extending it based on information gained
by the training.

Figure C.6: Illustrations of three different notions of state-wise safety from [271]. Left.
safety after convergence. Middle. safety during training with hard constraints. Right.
safety during training with progressive safe exploration.

155

Appendix D
Tabular reinforcement learning

In tabular RL, typically value-based RL methods are utilised with the general policy itera-
tion method which involves perpetually repeating policy evaluation and policy improvement
until convergence. Policy evaluation is a technique to approximate the value function of a
policy vπ(s) or qπ(s, a), while the policy improvement is to improve the policy π(a|s) based
on its value function.

In the easiest case, when the state and action spaces are small enough, and the dynamics
of the environment (the p(st+1, rt | st, at) transition probability function) are known, then
dynamic programming (DP) [143] can be applied to calculate vπ(s) or qπ(s, a) with a tech-
nique called bootstrapping, in which the value of a state (or state-action pair) is computed
based on the Bellman equation, presented in Eq. (D.1). The value of a state is calculated
based on its neighbor states. When vπ(s) or qπ(s, a) is computed, the agent chooses the
greedily the best actions. The new policy is given by the Bellman optimality equation,
see in Eq. (D.2). It is important to note that in DP there is no real interaction between
the agent and the environment, everything is computed knowing the dynamics of the envi-
ronment. In practice, many problems are not solvable by DP methods because either the
environmental dynamics are unknown or the state and action spaces are excessively large.

vπ(s)=̇
∑
a

π(a | s)
∑
s′,r

[p(s′, r | s, a) [r + γvπ(s
′)]] (D.1)

π(s)=̇ argmax
a

∑
s′,r

[p(s′, r | s, a) [r + γvπ(s
′)]] (D.2)

156

Monte Carlo (MC) methods [73] is another set of algorithms to solve tabular RL prob-
lems. In this case, the agent learns the vπ(s) or qπ(s, a) with trial-and-error. It is beneficial
to learn qπ(s, a), especially when the transition probability function is unknown. Start-
ing from an arbitrary random policy, the agent interacts with the environment, collects
rewards, and updates its value function based on its experience. The MC return is com-
puted as in Eq. (D.3). It is important to note, that in MC methods, the agent does not
need to know the transition probability function (the dynamics of the environment), but
it must go until the end of an episode to update its value function and it does not use
bootstrapping. Two main versions are every-visit and first-visit MC methods [279].

Gt=̇Rt+1 + γRt+2 + γ2Rt+3 + . . .+ γT−t−1RT (D.3)

Temporal difference (TD) [247] methods combine the advantages of DP and MC. On
one hand, they learn with trial-and-error and do not require access to the p(st+1, rt | st, at)
transitional probability function, similar to MC methods. On the other hand, they do not
wait until the end of the episode as they apply bootstrapping, similar to DP methods.
The simplest method is called one-step TD or TD(0). The Q value update is presented in
Eq. (D.4). Furthermore, n-step TD methods or TD(λ) methods enable bootstrapping to
occur over multiple steps. The return is computed as presented in Eq. (D.5). The TD(∞)
methods are equivalent to the MC methods. The most famous TD methods are SARSA,
Q-learning, and Expected SARSA [280]. To avoid the maximization bias, double learning
(e.g., Double Q-learning) can be utilised. In double learning, there are two parallel Q
functions Q1 and Q2. For updating Q1 the bootstrapping uses de value of Q2, and for
updating Q2, the bootstrapping is based on Q1.

Q(St, At)← Q(St, At) + α [Rt+1 + γQ(St+1, At+1)−Q(St, At)] (D.4)

Gt=̇Rt+1 + γRt+2 + . . .+ γn−1Rt+n + γnQt+n−1(St+n, At+n) (D.5)

157

Appendix E
Detailed results of HiER and HiER+

In this appendix, the detailed results of HiER and HiER+ on the Panda-Gym robotic
benchmark are presented. Tab. E.1 displays the results based on success rate, while
Tab. E.2 shows the results based on rewards.

158

T
ab

le
E
.1
:
H
iE
R

an
d
H
iE
R
+

co
m
p
ar
ed

to
th
e
st
at
e-
of
-t
h
e-
ar
t
b
as
ed

on
su
cc
es
s
ra
te
s
on

th
e
P
an

d
a-
G
y
m

ro
b
ot
ic

b
en
ch
m
ar
k
.
O
n
th
e
le
ft

si
d
e
of

th
e
h
ea
d
er
,
th
e
co
m
p
on

en
ts

of
th
e
sp
ec
ifi
c
al
go
ri
th
m

ar
e
d
is
p
la
ye
d

(H
E
R
,
P
E
R
,
IS
E
,
H
iE
R
).
T
h
e
co
lu
m
n
-w

is
e
b
es
t
re
su
lt
s
ar
e
m
ar
ke
d
in

b
ol
d
.

P
a
n
d
a
P
u
s
h
-
v
3
|P

a
n
d
a
S
l
i
d
e
-
v
3
|P

a
n
d
a
P
i
c
k
A
n
d
P
l
a
c
e
-
v
3

HER
PER
ISE
HiER

M
ea
n
↑

M
ed

ia
n
↑

IQ
M
↑

O
G
↓

M
ax
↑

Baselines

-
-
-
-

0.
16
|0

.1
2
|0

.0
7

0.
15
|0

.0
5
|0

.0
7

0.
15
|0

.0
8
|0

.0
7

0.
8
4
|0

.8
8
|0

.9
3

0.
2
1
|0

.3
4
|0

.0
9

✓
-
-
-

0.
97
|0

.3
8
|0

.2
7

0.
98
|0

.3
7
|0

.2
8

0.
97
|0

.3
7
|0

.2
7

0.
0
3
|0

.6
2
|0

.7
3

0.
9
9
|0

.4
5
|0

.3
2

-
✓
-
-

0.
26
|0

.2
5
|0

.0
8

0.
25
|0

.2
7
|0

.0
9

0.
25
|0

.2
7
|0

.0
8

0.
7
4
|0

.7
5
|0

.9
2

0.
4
3
|0

.4
2
|0

.1
0

✓
✓
-
-

0.
93
|0

.3
7
|0

.2
8

0.
94
|0

.3
7
|0

.2
8

0.
93
|0

.3
7
|0

.2
7

0.
0
7
|0

.6
3
|0

.7
2

0.
9
7
|0

.4
3
|0

.3
3

HiER

-
-
-
✓

0.
44
|0

.2
9
|0

.0
9

0.
44
|0

.2
8
|0

.0
9

0.
44
|0

.2
9
|0

.0
9

0.
5
6
|0

.7
1
|0

.9
1

0.
5
7
|0

.3
9
|0

.1
1

✓
-
-
✓

1
.0
0
|0

.7
9
|0

.3
9

1
.0
0
|0

.8
1
|0

.3
9

1
.0
0
|0

.8
1
|0

.3
9

0
.0
0
|0

.2
1
|0

.6
1

1
.0
0
|0

.9
1
|0

.4
2

-
✓
-
✓

0.
80
|0

.4
1
|0

.1
3

0.
88
|0

.4
2
|0

.1
3

0.
83
|0

.4
4
|0

.1
3

0.
2
0
|0

.5
9
|0

.8
7

0.
9
8
|0

.6
6
|0

.1
6

✓
✓
-
✓

0.
98
|0

.7
8
|0

.3
7

0.
99
|0

.7
8
|0

.3
7

0.
99
|0

.7
8
|0

.3
7

0.
0
2
|0

.2
2
|0

.6
3

1
.0
0
|0

.8
3
|0

.3
9

ISE

-
-
✓
-

0.
85
|0

.4
5
|0

.2
5

0.
85
|0

.4
5
|0

.2
5

0.
86
|0

.4
5
|0

.2
5

0.
1
5
|0

.5
5
|0

.7
5

0.
9
5
|0

.4
7
|0

.3
0

✓
-
✓
-

1
.0
0
|0

.4
5
|0

.4
2

1
.0
0
|0

.4
5
|0

.4
3

1
.0
0
|0

.4
5
|0

.4
3

0
.0
0
|0

.5
5
|0

.5
8

1
.0
0
|0

.5
2
|0

.5
3

-
✓
✓
-

0.
83
|0

.4
4
|0

.3
1

0.
83
|0

.4
4
|0

.3
0

0.
83
|0

.4
4
|0

.3
0

0.
1
7
|0

.5
6
|0

.6
9

0.
8
9
|0

.5
2
|0

.3
6

✓
✓
✓
-

0.
99
|0

.4
6
|0

.3
9

1
.0
0
|0

.4
6
|0

.3
8

1
.0
0
|0

.4
6
|0

.3
9

0
.0
1
|0

.5
4
|0

.6
1

1
.0
0
|0

.5
0
|0

.4
4

HiER+

-
-
✓
✓

0.
98
|0

.5
3
|0

.3
3

0.
99
|0

.4
8
|0

.3
2

0.
99
|0

.4
9
|0

.3
2

0.
0
2
|0

.4
7
|0

.6
7

1
.0
0
|0

.7
6
|0

.3
9

✓
-
✓
✓

1
.0
0
|0

.8
3
|0

.6
9

1
.0
0
|0

.8
1
|0

.7
4

1
.0
0
|0

.8
2
|0

.7
1

0
.0
0
|0

.1
7
|0

.3
1

1
.0
0
|0

.9
5
|0

.9
0

-
✓
✓
✓

0.
98
|0

.5
1
|0

.4
1

0.
98
|0

.4
9
|0

.4
0

0.
98
|0

.5
0
|0

.4
0

0.
0
2
|0

.4
9
|0

.5
9

1
.0
0
|0

.6
5
|0

.5
0

✓
✓
✓
✓

1
.0
0
|0

.8
4
|0

.4
7

1
.0
0
|0

.8
6
|0

.4
5

1
.0
0
|0

.8
5
|0

.4
6

0
.0
0
|0

.1
6
|0

.5
3

1
.0
0
|0

.8
8
|0

.5
5

159

T
ab

le
E
.2
:
H
iE
R
an

d
H
iE
R
+

co
m
p
ar
ed

to
th
e
st
at
e-
of
-t
h
e-
ar
t
b
as
ed

on
th
e
ev
al
u
at
io
n
re
w
ar
d
s
on

th
e
P
an

d
a-

G
y
m

ro
b
ot
ic
b
en
ch
m
ar
k
.
O
n
th
e
le
ft
si
d
e
of

th
e
h
ea
d
er
,
th
e
co
m
p
on

en
ts

of
th
e
sp
ec
ifi
c
al
go
ri
th
m

ar
e
d
is
p
la
ye
d

(H
E
R
,
P
E
R
,
IS
E
,
H
iE
R
).

T
h
e
d
es
ir
ed

p
er
fo
rm

an
ce

sc
or
es

fo
r
th
e
O
G

m
et
ri
c
ar
e
-1
0,

-2
0,

an
d
-3
0
fo
r
th
e

p
u
sh
,
sl
id
e,

an
d
p
ic
k
-a
n
d
-p
la
ce

ta
sk
s
re
sp
ec
ti
ve
ly
.
T
h
e
co
lu
m
n
-w

is
e
b
es
t
re
su
lt
s
ar
e
m
ar
ke
d
in

b
ol
d
.

P
a
n
d
a
P
u
s
h
-
v
3
|P

a
n
d
a
S
l
i
d
e
-
v
3
|P

a
n
d
a
P
i
c
k
A
n
d
P
l
a
c
e
-
v
3

HER
PER
ISE
HiER

M
ea
n
↑

M
ed
ia
n
↑

IQ
M
↑

O
G
↓

M
a
x
↑

Baselines

-
-
-
-

-4
6.
2
|-
46
.7
|-
48
.2

-4
6
.2
|-
4
9
.0
|-
4
8
.5

-4
6
.4
|-
4
8
.0
|-
4
8
.3

3
6
.2
|2

6
.7
|1

8
.2

-4
1
.0
|-
3
7
.6
|-
4
6
.5

✓
-
-
-

-1
1.
4
|-
39
.2
|-
41
.8

-1
1
.2
|-
3
8
.5
|-
4
1
.1

-1
1
.2
|-
3
8
.7
|-
4
1
.5

1
.5
|1

9
.2
|1

1
.8

-9
.6
|-
3
6
.5
|-
3
9
.5

-
✓
-
-

-4
0.
8
|-
43
.5
|-
48
.8

-4
1
.6
|-
4
3
.4
|-
4
8
.5

-4
1
.4
|-
4
3
.0
|-
4
8
.7

3
0
.8
|2

3
.5
|1

8
.8

-3
2
.6
|-
3
8
.3
|-
4
8
.0

✓
✓
-
-

-1
2.
7
|-
38
.5
|-
40
.4

-1
1
.9
|-
3
8
.7
|-
3
9
.8

-1
2
.3
|-
3
8
.6
|-
4
0
.1

2
.7
|1

8
.5
|1

0
.4

-9
.7
|-
3
5
.5
|-
3
6
.6

HiER

-
-
-
✓

-3
4.
1
|-
42
.0
|-
47
.6

-3
5
.0
|-
4
2
.0
|-
4
7
.8

-3
4
.4
|-
4
2
.5
|-
4
7
.7

2
4
.1
|2

2
.0
|1

7
.6

-2
7
.0
|-
3
5
.6
|-
4
6
.2

✓
-
-
✓

-7
.0
|-
23
.6
|-
3
7.
2

-6
.8
|-
2
2
.6
|-
3
6
.6

-6
.9
|-
2
3
.1
|-
3
6
.9

0
.0
|

4
.0
|

7
.2

-6
.1
|-
1
7
.8
|-
3
4
.5

-
✓
-
✓

-1
7.
2
|-
38
.2
|-
46
.8

-1
4
.5
|-
3
6
.6
|-
4
6
.7

-1
5
.7
|-
3
6
.8
|-
4
6
.7

7
.2
|1

8
.2
|1

6
.8

-9
.9
|-
3
2
.9
|-
4
5
.1

✓
✓
-
✓

-8
.4
|-
25
.4
|-
3
7.
7

-8
.3
|-
2
4
.9
|-
3
7
.3

-8
.3
|-
2
5
.1
|-
3
7
.5

0
.1
|

5
.4
|

7
.7

-6
.4
|-
2
1
.2
|-
3
6
.2

ISE

-
-
✓
-

-1
4.
9
|-
37
.3
|-
41
.6

-1
5
.0
|-
3
7
.8
|-
4
1
.6

-1
5
.1
|-
3
7
.4
|-
4
1
.4

5
.0
|1

7
.3
|1

1
.6

-8
.3
|-
3
3
.6
|-
3
8
.8

✓
-
✓
-

-8
.1
|-
35
.9
|-
3
4.
1

-8
.0
|-
3
5
.9
|-
3
4
.6

-8
.0
|-
3
5
.9
|-
3
4
.4

0
.0
|1

5
.9
|

4
.3

-6
.7
|-
3
2
.7
|-
2
7
.2

-
✓
✓
-

-1
6.
3
|-
37
.3
|-
39
.1

-1
5
.7
|-
3
7
.5
|-
3
9
.0

-1
6
.1
|-
3
7
.5
|-
3
8
.9

6
.3
|1

7
.3
|

9
.1

-1
2
.1
|-
3
4
.8
|-
3
5
.8

✓
✓
✓
-

-8
.1
|-
37
.6
|-
3
6.
1

-7
.8
|-
3
7
.7
|-
3
6
.6

-8
.0
|-
3
7
.7
|-
3
6
.5

0
.0
|1

7
.6
|

6
.1

-6
.4
|-
3
4
.9
|-
3
1
.6

HiER+

-
-
✓
✓

-8
.8
|-
33
.4
|-
3
8.
1

-8
.2
|-
3
3
.1
|-
3
8
.5

-8
.5
|-
3
3
.8
|-
3
8
.3

0
.3
|1

3
.4
|

8
.1

-7
.1
|-
2
6
.6
|-
3
4
.8

✓
-
✓
✓

-6
.9
|-
22
.5
|-
2
4
.2

-7
.0
|-
2
2
.9
|-
2
3
.2

-7
.0
|-
2
2
.8
|-
2
3
.0

0
.0
|

3
.0
|

1
.0

-5
.9
|-
1
7
.4
|-
1
5
.0

-
✓
✓
✓

-8
.6
|-
34
.9
|-
3
4.
6

-8
.4
|-
3
5
.9
|-
3
4
.8

-8
.5
|-
3
5
.3
|-
3
4
.6

0
.0
|1

4
.9
|

4
.6

-7
.8
|-
3
0
.5
|-
3
0
.9

✓
✓
✓
✓

-7
.7
|-
2
1
.7
|-
3
3.
9

-7
.4
|-
2
1
.5
|-
3
4
.4

-7
.5
|-
2
1
.5
|-
3
4
.0

0
.0
|

2
.3
|

4
.1

-7
.0
|-
1
7
.4
|-
2
8
.0

160

References

Author’s journal papers

[1] D. Horváth, G. Erdős, Z. Istenes, T. Horváth, and S. Földi, “Object Detection
Using Sim2Real Domain Randomization for Robotic Applications,” IEEE Transac-
tions on Robotics, vol. 39, no. 2, pp. 1225–1243, Apr. 2023, issn: 1941-0468. doi:
10.1109/TRO.2022.3207619.

[2] D. Horváth, J. Bujalance Mart́ın, F. Gábor Erdős, Z. Istenes, and F. Moutarde,
“HiER: Highlight Experience Replay for Boosting Off-Policy Reinforcement Learn-
ing Agents,” IEEE Access, vol. 12, pp. 100 102–100 119, Jul. 2024, issn: 2169-3536.
doi: 10.1109/ACCESS.2024.3427012.

[3] G. Erdős, K. Abai, R. Beregi, et al., “Enabling Technologies for Autonomous
Robotic Systems in Manufacturing,” Transactions of Nanjing University of Aero-
nautics and Astronautics, vol. 41, no. 4, pp. 403–431, Aug. 2024, issn: 1005-1120.
doi: 10.16356/j.1005-1120.2024.04.001.

Author’s conference papers

[4] D. Horváth, K. Bocsi, G. Erdős, and Z. Istenes, “Sim2Real Grasp Pose Estimation
for Adaptive Robotic Applications,” in the 22nd IFAC World Congress, ser. IFAC-
PapersOnLine, vol. 56, 2023, pp. 5233–5239. doi: 10.1016/j.ifacol.2023.10.
121.

161

https://doi.org/10.1109/TRO.2022.3207619
https://doi.org/10.1109/ACCESS.2024.3427012
https://doi.org/10.16356/j.1005-1120.2024.04.001
https://doi.org/10.1016/j.ifacol.2023.10.121
https://doi.org/10.1016/j.ifacol.2023.10.121

[5] G. Erdős, D. Horváth, and G. Horváth, “Visual Servo Guided Cyber-Physical
Robotic Assembly Cell,” in the 17th IFAC Symposium on Information Control
Problems in Manufacturing (INCOM), ser. IFAC-PapersOnLine, vol. 54, Jan. 2021,
pp. 595–600. doi: 10.1016/j.ifacol.2021.08.068.

[6] M. Hajós and D. Horváth, “Robotos Pakolási Feladat Megoldása Környezetér-
zékelés Seǵıtségével,” in Nemzetközi Gépészeti Konferencia (OGÉT), Apr. 2020,
pp. 305–308. [Online]. Available: https://ojs.emt.ro/oget/article/view/156.

[7] Z. Kemény, R. Beregi, J. Nacsa, C. Kardos, and D. Horváth, “Human–Robot Col-
laboration in the MTA SZTAKI Learning Factory Facility at Győr,” in the 8th CIRP
Sponsored Conference on Learning Factories (CLF), ser. Procedia Manufacturing,
vol. 23, Jan. 2018, pp. 105–110. doi: 10.1016/j.promfg.2018.04.001.

[8] Z. Kemény, R. Beregi, J. Nacsa, C. Kardos, and D. Horváth, “Example of a
Problem-to-Course Life Cycle in Layout and Process Planning at the MTA SZTAKI
Learning Factories,” in the 9th Conference on Learning Factories (CLF), ser. Pro-
cedia Manufacturing, vol. 31, Jan. 2019, pp. 206–212. doi: 10.1016/j.promfg.
2019.03.033.

Other references

[9] Y. N. Harari, Sapiens: A Brief History of Humankind. Harper, 2015, isbn:
9780062316097.

[10] J. Zhou, Y. Zhou, B. Wang, and J. Zang, “Human–Cyber–Physical Systems
(HCPSs) in the Context of New-Generation Intelligent Manufacturing,” Engineer-
ing, vol. 5, no. 4, pp. 624–636, Aug. 2019, issn: 2095-8099. doi: 10.1016/j.eng.
2019.07.015.

[11] H. P. Moravec, Mind Children: The Future of Robot and Human Intelligence. Cam-
bridge, Mass. : Harvard University Press, 1988, isbn: 9780674576162.

[12] G. A. Bekey, Autonomous Robots: From Biological Inspiration to Implementation
and Control. The MIT Press, 2005, isbn: 9780262025782.

[13] Y. LeCun, Language is Low Bandwidth, X, Mar. 2024. [Online]. Available: https:
//x.com/ylecun/status/1766498677751787723 (visited on 09/10/2024).

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation,” arXiv, May 2015. doi: 10.48550/arXiv.1505.
04597.

162

https://doi.org/10.1016/j.ifacol.2021.08.068
https://ojs.emt.ro/oget/article/view/156
https://doi.org/10.1016/j.promfg.2018.04.001
https://doi.org/10.1016/j.promfg.2019.03.033
https://doi.org/10.1016/j.promfg.2019.03.033
https://doi.org/10.1016/j.eng.2019.07.015
https://doi.org/10.1016/j.eng.2019.07.015
https://x.com/ylecun/status/1766498677751787723
https://x.com/ylecun/status/1766498677751787723
https://doi.org/10.48550/arXiv.1505.04597
https://doi.org/10.48550/arXiv.1505.04597

[15] M. A. Mazurowski, M. Buda, A. Saha, and M. R. Bashir, “Deep Learning in Radiol-
ogy: An Overview of the Concepts and a Survey of the State of the Art with Focus
on MRI,” Journal of Magnetic Resonance Imaging, vol. 49, no. 4, pp. 939–954, Apr.
2019, issn: 1522-2586. doi: 10.1002/jmri.26534.

[16] N. Gogin, M. Viti, L. Nicodème, et al., “Automatic Coronary Artery Calcium Scor-
ing from Unenhanced-ECG-gated CT using Deep Learning,” Diagnostic and Inter-
ventional Imaging, vol. 102, no. 11, pp. 683–690, Nov. 2021, issn: 2211-5684. doi:
10.1016/j.diii.2021.05.004.

[17] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep Learning in Drug Discovery,”
Molecular Informatics, vol. 35, no. 1, pp. 3–14, Jan. 2016, issn: 1868-1751. doi:
10.1002/minf.201501008.

[18] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The Rise of Deep
Learning in Drug Discovery,” Drug Discovery Today, vol. 23, no. 6, pp. 1241–1250,
Jun. 2018, issn: 1359-6446. doi: 10.1016/j.drudis.2018.01.039.

[19] C. Kerepesi, B. Daróczy, Á. Sturm, T. Vellai, and A. Benczúr, “Prediction and
Characterization of Human Ageing-Related Proteins by Using Machine Learning,”
Scientific Reports, vol. 8, no. 1, p. 4094, Mar. 2018, issn: 2045-2322. doi: 10.1038/
s41598-018-22240-w.

[20] C. Su, Z. Xu, J. Pathak, and F. Wang, “Deep Learning in Mental Health Outcome
Research: A Scoping Review,” Translational Psychiatry, vol. 10, no. 1, pp. 1–26,
Apr. 2020, issn: 2158-3188. doi: 10.1038/s41398-020-0780-3.

[21] D. Kuang and L. He, “Classification on ADHD with Deep Learning,” in 2014 In-
ternational Conference on Cloud Computing and Big Data, Nov. 2014, pp. 27–32.
doi: 10.1109/CCBD.2014.42.

[22] S. Laksshman, R. R. Bhat, V. Viswanath, and X. Li, “DeepBipolar: Identifying
Genomic Mutations for Bipolar Disorder via Deep Learning,” Human Mutation,
vol. 38, no. 9, pp. 1217–1224, Jun. 2017, issn: 1098-1004. doi: 10.1002/humu.23272.

[23] A. Jan, H. Meng, Y. F. B. A. Gaus, and F. Zhang, “Artificial Intelligent System
for Automatic Depression Level Analysis Through Visual and Vocal Expressions,”
IEEE Transactions on Cognitive and Developmental Systems, vol. 10, no. 3, pp. 668–
680, Sep. 2018, issn: 2379-8939. doi: 10.1109/TCDS.2017.2721552.

[24] J. Kim, J. Lee, E. Park, and J. Han, “A Deep Learning Model for Detecting Men-
tal Illness from User Content on Social Media,” Scientific Reports, vol. 10, no. 1,
p. 11 846, Jul. 2020, issn: 2045-2322. doi: 10.1038/s41598-020-68764-y.

163

https://doi.org/10.1002/jmri.26534
https://doi.org/10.1016/j.diii.2021.05.004
https://doi.org/10.1002/minf.201501008
https://doi.org/10.1016/j.drudis.2018.01.039
https://doi.org/10.1038/s41598-018-22240-w
https://doi.org/10.1038/s41598-018-22240-w
https://doi.org/10.1038/s41398-020-0780-3
https://doi.org/10.1109/CCBD.2014.42
https://doi.org/10.1002/humu.23272
https://doi.org/10.1109/TCDS.2017.2721552
https://doi.org/10.1038/s41598-020-68764-y

[25] J. Huang, J. Chai, and S. Cho, “Deep Learning in Finance and Banking: A Literature
Review and Classification,” Frontiers of Business Research in China, vol. 14, no. 1,
p. 13, Jun. 2020, issn: 1673-7431. doi: 10.1186/s11782-020-00082-6.

[26] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep Learning for Financial
Applications : A Survey,” Applied Soft Computing, vol. 93, p. 106 384, Aug. 2020,
issn: 1568-4946. doi: 10.1016/j.asoc.2020.106384.

[27] K. Khare, O. Darekar, P. Gupta, and V. Z. Attar, “Short Term Stock Price Pre-
diction Using Deep Learning,” in 2017 2nd IEEE International Conference on Re-
cent Trends in Electronics, Information and Communication Technology (RTEICT),
May 2017, pp. 482–486. doi: 10.1109/RTEICT.2017.8256643.

[28] Z. Jiang, D. Xu, and J. Liang, “A Deep Reinforcement Learning Framework for
the Financial Portfolio Management Problem,” arXiv, Jul. 2017. doi: 10.48550/
arXiv.1706.10059.

[29] G. Zioviris, K. Kolomvatsos, and G. Stamoulis, “Credit Card Fraud Detection Using
a Deep Learning Multistage Model,” The Journal of Supercomputing, vol. 78, no. 12,
pp. 14 571–14 596, Aug. 2022, issn: 1573-0484. doi: 10.1007/s11227-022-04465-9.

[30] W. Guettala and L. Gulyás, “On the Power of Graph Neural Networks and Feature
Augmentation Strategies to Classify Social Networks,” in Intelligent Information
and Database Systems, Springer Nature, 2024, pp. 287–301, isbn: 9789819749850.
doi: 10.1007/978-981-97-4985-0_23.

[31] E. Suel, J. W. Polak, J. E. Bennett, and M. Ezzati, “Measuring Social, Environ-
mental and Health Inequalities Using Deep Learning and Street Imagery,” Scientific
Reports, vol. 9, no. 1, p. 6229, Apr. 2019, issn: 2045-2322. doi: 10.1038/s41598-
019-42036-w.

[32] J. Amankwah-Amoah, S. Abdalla, E. Mogaji, A. Elbanna, and Y. K. Dwivedi, “The
Impending Disruption of Creative Industries by Generative AI: Opportunities, Chal-
lenges, and Research Agenda,” International Journal of Information Management,
vol. 79, p. 102 759, Dec. 2024, issn: 0268-4012. doi: 10.1016/j.ijinfomgt.2024.
102759.

[33] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” in Advances in Neural Information
Processing Systems, vol. 25, Curran Associates, Inc., 2012. [Online]. Avail-
able: https : / / papers . nips . cc / paper _ files / paper / 2012 / hash /

c399862d3b9d6b76c8436e924a68c45b-Abstract.html (visited on 09/10/2024).

164

https://doi.org/10.1186/s11782-020-00082-6
https://doi.org/10.1016/j.asoc.2020.106384
https://doi.org/10.1109/RTEICT.2017.8256643
https://doi.org/10.48550/arXiv.1706.10059
https://doi.org/10.48550/arXiv.1706.10059
https://doi.org/10.1007/s11227-022-04465-9
https://doi.org/10.1007/978-981-97-4985-0_23
https://doi.org/10.1038/s41598-019-42036-w
https://doi.org/10.1038/s41598-019-42036-w
https://doi.org/10.1016/j.ijinfomgt.2024.102759
https://doi.org/10.1016/j.ijinfomgt.2024.102759
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper_files/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html

[34] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection,” arXiv, Apr. 2020. doi: 10.48550/arXiv.2004.
10934.

[35] A. Barisic, F. Petric, and S. Bogdan, “Sim2Air - Synthetic Aerial Dataset for UAV
Monitoring,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 3757–3764,
Apr. 2022, issn: 2377-3766. doi: 10.1109/LRA.2022.3147337.

[36] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation,” arXiv, Oct. 2016. doi:
10.48550/arXiv.1511.00561.

[37] C. Henry, S. M. Azimi, and N. Merkle, “Road Segmentation in SAR Satellite Images
With Deep Fully Convolutional Neural Networks,” IEEE Geoscience and Remote
Sensing Letters, vol. 15, no. 12, pp. 1867–1871, Dec. 2018, issn: 1558-0571. doi:
10.1109/LGRS.2018.2864342.

[38] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning with Neural
Networks,” in Advances in Neural Information Processing Systems, vol. 27, Cur-
ran Associates, Inc., 2014. [Online]. Available: https://proceedings.neurips.
cc / paper _ files / paper / 2014 / hash / a14ac55a4f27472c5d894ec1c3c743d2 -

Abstract.html (visited on 09/10/2024).

[39] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is All you Need,” in Advances
in Neural Information Processing Systems, vol. 30, Curran Associates, Inc., 2017.
[Online]. Available: https://papers.nips.cc/paper_files/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html (visited on 09/10/2024).

[40] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Association for Computational Linguis-
tics, Jun. 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[41] OpenAI, J. Achiam, S. Adler, et al., “GPT-4 Technical Report,” arXiv, Mar. 2024.
doi: 10.48550/arXiv.2303.08774.

[42] J.-E. Deschaud, “IMLS-SLAM: Scan-to-Model Matching Based on 3D Data,” in
2018 IEEE International Conference on Robotics and Automation (ICRA), May
2018, pp. 2480–2485. doi: 10.1109/ICRA.2018.8460653.

[43] S. Horache, J.-E. Deschaud, and F. Goulette, “3D Point Cloud Registration with
Multi-Scale Architecture and Unsupervised Transfer Learning,” in 2021 Interna-
tional Conference on 3D Vision (3DV), Dec. 2021, pp. 1351–1361. doi: 10.1109/
3DV53792.2021.00142.

165

https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1109/LRA.2022.3147337
https://doi.org/10.48550/arXiv.1511.00561
https://doi.org/10.1109/LGRS.2018.2864342
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2014/hash/a14ac55a4f27472c5d894ec1c3c743d2-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.1109/ICRA.2018.8460653
https://doi.org/10.1109/3DV53792.2021.00142
https://doi.org/10.1109/3DV53792.2021.00142

[44] B. Mildenhall, P. P. Srinivasan, M. Tancik, et al., “NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis,” arXiv, Aug. 2020. doi: 10.48550/
arXiv.2003.08934.

[45] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for
Real-Time Radiance Field Rendering,” arXiv, Aug. 2023. doi: 10.48550/arXiv.
2308.04079.

[46] J. Sanchez, J.-E. Deschaud, and F. Goulette, “Domain Generalization of 3D Seman-
tic Segmentation in Autonomous Driving,” in International Conference on Com-
puter Vision, 2023, pp. 18 077–18 087. [Online]. Available: https://openaccess.
thecvf.com/content/ICCV2023/html/Sanchez_Domain_Generalization_of_

3D_Semantic_Segmentation_in_Autonomous_Driving_ICCV_2023_paper.html

(visited on 09/10/2024).

[47] L. Soum-Fontez, J.-E. Deschaud, and F. Goulette, “MDT3D: Multi-Dataset Train-
ing for LiDAR 3D Object Detection Generalization,” arXiv, Aug. 2023. doi: 10.
48550/arXiv.2308.01000.

[48] A. Brunetto, S. Hornauer, and F. Moutarde, “NeRAF: 3D Scene Infused Neural
Radiance and Acoustic Fields,” arXiv, May 2024. doi: 10.48550/arXiv.2405.
18213.

[49] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, “Learning Hand-Eye Coordi-
nation for Robotic Grasping with Deep Learning and Large-Scale Data Collection,”
The International Journal of Robotics Research, Mar. 2016, issn: 0278-3649. doi:
10.1177/0278364917710318.

[50] J. Tobin, L. Biewald, R. Duan, et al., “Domain Randomization and Generative
Models for Robotic Grasping,” in 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Oct. 2018, pp. 3482–3489. doi: 10.1109/
IROS.2018.8593933.

[51] OpenAI, I. Akkaya, M. Andrychowicz, et al., “Solving Rubik’s Cube with a Robot
Hand,” arXiv, Oct. 2019. doi: 10.48550/arXiv.1910.07113.

[52] J. Mahler, M. Matl, V. Satish, et al., “Learning Ambidextrous Robot Grasping
Policies,” Science Robotics, vol. 4, no. 26, Jan. 2019. doi: 10.1126/scirobotics.
aau4984.

[53] A. Moreau, N. Piasco, D. Tsishkou, B. Stanciulescu, and A. d. L. Fortelle, “LENS:
Localization Enhanced by NeRF Synthesis,” in Proceedings of the 5th Conference
on Robot Learning, PMLR, Jan. 2022, pp. 1347–1356. [Online]. Available: https:
//proceedings.mlr.press/v164/moreau22a.html (visited on 09/10/2024).

166

https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.48550/arXiv.2003.08934
https://doi.org/10.48550/arXiv.2308.04079
https://doi.org/10.48550/arXiv.2308.04079
https://openaccess.thecvf.com/content/ICCV2023/html/Sanchez_Domain_Generalization_of_3D_Semantic_Segmentation_in_Autonomous_Driving_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Sanchez_Domain_Generalization_of_3D_Semantic_Segmentation_in_Autonomous_Driving_ICCV_2023_paper.html
https://openaccess.thecvf.com/content/ICCV2023/html/Sanchez_Domain_Generalization_of_3D_Semantic_Segmentation_in_Autonomous_Driving_ICCV_2023_paper.html
https://doi.org/10.48550/arXiv.2308.01000
https://doi.org/10.48550/arXiv.2308.01000
https://doi.org/10.48550/arXiv.2405.18213
https://doi.org/10.48550/arXiv.2405.18213
https://doi.org/10.1177/0278364917710318
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.1109/IROS.2018.8593933
https://doi.org/10.48550/arXiv.1910.07113
https://doi.org/10.1126/scirobotics.aau4984
https://doi.org/10.1126/scirobotics.aau4984
https://proceedings.mlr.press/v164/moreau22a.html
https://proceedings.mlr.press/v164/moreau22a.html

[54] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde, “THOMAS:
Trajectory Heatmap Output with Learned Multi-Agent Sampling,” in the 10th In-
ternational Conference on Learning Representations (ICLR), Jan. 2022. doi: 10.
48550/arXiv.2110.06607.

[55] T. Gilles, S. Sabatini, D. Tsishkou, B. Stanciulescu, and F. Moutarde, “GOHOME:
Graph-Oriented Heatmap Output for future Motion Estimation,” in 2022 Interna-
tional Conference on Robotics and Automation (ICRA), May 2022, pp. 9107–9114,
isbn: 9781728196817. doi: 10.1109/ICRA46639.2022.9812253.

[56] S. H. Tóth, Z. J. Viharos, Á. Bárdos, and Z. Szalay, “Sim-to-Real Application
of Reinforcement Learning Agents for Autonomous, Real Vehicle Drifting,” Ve-
hicles, vol. 6, no. 2, pp. 781–798, Jun. 2024, issn: 2624-8921. doi: 10 . 3390 /

vehicles6020037.

[57] R. Chekroun, H. Wang, J. Lee, et al., “Mesoscale Traffic Forecasting for Real-Time
Bottleneck and Shockwave Prediction,” arXiv, Mar. 2024. doi: 10.48550/arXiv.
2402.05663.

[58] J. Botzheim, T. Obo, and N. Kubota, “Human Gesture Recognition for Robot
Partners by Spiking Neural Network and Classification Learning,” in The 6th In-
ternational Conference on Soft Computing and Intelligent Systems, and The 13th
International Symposium on Advanced Intelligence Systems, Nov. 2012, pp. 1954–
1958. doi: 10.1109/SCIS-ISIS.2012.6505305.

[59] J. Gesnouin, S. Pechberti, B. Stanciulcscu, and F. Moutarde, “TrouSPI-Net: Spatio-
Temporal Attention on Parallel Atrous Convolutions and U-GRUs for Skeletal
Pedestrian Crossing Prediction,” in the 16th IEEE International Conference on
Automatic Face and Gesture Recognition, Dec. 2021, pp. 01–07. doi: 10.1109/
FG52635.2021.9666989.

[60] L. Wang, R. Gao, J. Váncza, et al., “Symbiotic Human-Robot Collaborative As-
sembly,” CIRP Annals, vol. 68, no. 2, pp. 701–726, Jan. 2019, issn: 0007-8506. doi:
10.1016/j.cirp.2019.05.002.

[61] B. Nagy and P. Korondi, “Deep Learning-Based Recognition and Analysis of Limb-
Independent Dog Behavior for Ethorobotical Application,” IEEE Access, vol. 10,
pp. 3825–3834, Jan. 2022, issn: 2169-3536. doi: 10.1109/ACCESS.2022.3140513.

[62] F. Zorić, A. Milas, T. Petrović, Z. Kovačić, and M. Orsag, “AI-Enhanced Structural
Health Monitoring with a Multi-Rotor Aerial Vehicle,” in 2024 International Con-
ference on Unmanned Aircraft Systems (ICUAS), Jun. 2024, pp. 1170–1176. doi:
10.1109/ICUAS60882.2024.10556849.

167

https://doi.org/10.48550/arXiv.2110.06607
https://doi.org/10.48550/arXiv.2110.06607
https://doi.org/10.1109/ICRA46639.2022.9812253
https://doi.org/10.3390/vehicles6020037
https://doi.org/10.3390/vehicles6020037
https://doi.org/10.48550/arXiv.2402.05663
https://doi.org/10.48550/arXiv.2402.05663
https://doi.org/10.1109/SCIS-ISIS.2012.6505305
https://doi.org/10.1109/FG52635.2021.9666989
https://doi.org/10.1109/FG52635.2021.9666989
https://doi.org/10.1016/j.cirp.2019.05.002
https://doi.org/10.1109/ACCESS.2022.3140513
https://doi.org/10.1109/ICUAS60882.2024.10556849

[63] T. Selimović, M. Peti, and S. Bogdan, “Multi-Agent Active Perception Based on
Reinforcement Learning and POMDP,” IEEE Access, vol. 12, pp. 48 004–48 016,
Apr. 2024, issn: 2169-3536. doi: 10.1109/ACCESS.2024.3383544.

[64] A. I. Károly, P. Galambos, J. Kuti, and I. J. Rudas, “Deep Learning in Robotics:
Survey on Model Structures and Training Strategies,” IEEE Transactions on Sys-
tems, Man, and Cybernetics: Systems, vol. 51, no. 1, pp. 266–279, Jan. 2021, issn:
2168-2232. doi: 10.1109/TSMC.2020.3018325.

[65] Y. Bao, Y. Li, S.-L. Huang, et al., “An Information-Theoretic Approach to Transfer-
ability in Task Transfer Learning,” in 2019 IEEE International Conference on Image
Processing (ICIP), Sep. 2019, pp. 2309–2313. doi: 10.1109/ICIP.2019.8803726.

[66] S. Zhou, M. K. Helwa, A. P. Schoellig, A. Sarabakha, and E. Kayacan, “Knowledge
Transfer Between Robots with Similar Dynamics for High-Accuracy Impromptu
Trajectory Tracking,” in 2019 18th European Control Conference (ECC), Jun. 2019,
pp. 1–8. doi: 10.23919/ECC.2019.8796140.

[67] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the Reality Gap:
A Survey on Sim-to-Real Transferability of Robot Controllers in Reinforcement
Learning,” IEEE Access, vol. 9, pp. 153 171–153 187, Nov. 2021, issn: 2169-3536.
doi: 10.1109/ACCESS.2021.3126658.

[68] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions on
Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct. 2010, issn:
1558-2191. doi: 10.1109/TKDE.2009.191.

[69] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A Survey of Transfer Learning,”
Journal of Big Data, vol. 3, no. 1, p. 9, May 2016, issn: 2196-1115. doi: 10.1186/
s40537-016-0043-6.

[70] J. Deng, W. Dong, R. Socher, et al., “ImageNet: A Large-Scale Hierarchical Image
Database,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
Jun. 2009, pp. 248–255. doi: 10.1109/CVPR.2009.5206848.

[71] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft COCO: Common Objects in
Context,” arXiv, Feb. 2015. doi: 10.48550/arXiv.1405.0312.

[72] S. Dasari, F. Ebert, S. Tian, et al., “RoboNet: Large-Scale Multi-Robot Learning,”
arXiv, Jan. 2020. doi: 10.48550/arXiv.1910.11215.

[73] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. A Bradford
Book, 2018, isbn: 9780262039246.

168

https://doi.org/10.1109/ACCESS.2024.3383544
https://doi.org/10.1109/TSMC.2020.3018325
https://doi.org/10.1109/ICIP.2019.8803726
https://doi.org/10.23919/ECC.2019.8796140
https://doi.org/10.1109/ACCESS.2021.3126658
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.48550/arXiv.1910.11215

[74] M. Naeem, S. T. H. Rizvi, and A. Coronato, “A Gentle Introduction to Rein-
forcement Learning and its Application in Different Fields,” IEEE Access, vol. 8,
pp. 209 320–209 344, Nov. 2020, issn: 2169-3536. doi: 10.1109/ACCESS.2020.
3038605.

[75] M. Q. Mohammed, K. L. Chung, and C. S. Chyi, “Review of Deep Reinforcement
Learning-Based Object Grasping: Techniques, Open Challenges, and Recommenda-
tions,” IEEE Access, vol. 8, pp. 178 450–178 481, Sep. 2020, issn: 2169-3536. doi:
10.1109/ACCESS.2020.3027923.

[76] Y. LeCun, “A Path Towards Autonomous Machine Intelligence,” version 0.9.2,, Jun.
2022. [Online]. Available: https://openreview.net/pdf?id=BZ5a1r-kVsf (visited
on 09/10/2024).

[77] D. Silver, T. Hubert, J. Schrittwieser, et al., “Mastering Chess and Shogi by Self-
Play with a General Reinforcement Learning Algorithm,” arXiv, Dec. 2017. doi:
10.48550/arXiv.1712.01815.

[78] D. Silver, J. Schrittwieser, K. Simonyan, et al., “Mastering the Game of Go without
Human Knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, Oct. 2017, issn: 1476-
4687. doi: 10.1038/nature24270.

[79] V. Mnih, K. Kavukcuoglu, D. Silver, et al., “Human-Level Control Through Deep
Reinforcement Learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015, issn:
1476-4687. doi: 10.1038/nature14236.

[80] D. Silver, G. Lever, N. Heess, et al., “Deterministic Policy Gradient Algorithms,”
in Proceedings of the 31st International Conference on Machine Learning, ser. Pro-
ceedings of Machine Learning Research, vol. 32, PMLR, Jun. 2014, pp. 387–395.
[Online]. Available: https://proceedings.mlr.press/v32/silver14.html (vis-
ited on 09/10/2024).

[81] T. P. Lillicrap, J. J. Hunt, A. Pritzel, et al., Continuous Control with Deep Rein-
forcement Learning, Jul. 2019. doi: 10.48550/arXiv.1509.02971.

[82] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing Function Approximation Error
in Actor-Critic Methods,” arXiv, Oct. 2018. doi: 10.48550/arXiv.1802.09477.

[83] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor,” arXiv,
Aug. 2018. doi: 10.48550/arXiv.1801.01290.

[84] M. Andrychowicz, F. Wolski, A. Ray, et al., “Hindsight Experience Replay,” in
Advances in Neural Information Processing Systems, vol. 30, Curran Associates,
Inc., Jul. 2017. doi: 10.48550/arXiv.1707.01495.

169

https://doi.org/10.1109/ACCESS.2020.3038605
https://doi.org/10.1109/ACCESS.2020.3038605
https://doi.org/10.1109/ACCESS.2020.3027923
https://openreview.net/pdf?id=BZ5a1r-kVsf
https://doi.org/10.48550/arXiv.1712.01815
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1802.09477
https://doi.org/10.48550/arXiv.1801.01290
https://doi.org/10.48550/arXiv.1707.01495

[85] J. Bujalance and F. Moutarde, “Reward Relabelling for Combined Reinforcement
and Imitation Learning on Sparse-Reward Tasks,” in Proceedings of the 2023 In-
ternational Conference on Autonomous Agents and Multiagent Systems, Feb. 2023,
pp. 2565–2567. doi: 10.48550/arXiv.2201.03834.

[86] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized Experience Replay,”
arXiv, Feb. 2016. doi: 10.48550/arXiv.1511.05952.

[87] J. Oh, Y. Guo, S. Singh, and H. Lee, “Self-Imitation Learning,” arXiv, Jun. 2018.
doi: 10.48550/arXiv.1806.05635.

[88] C. Wang and K. Ross, “Boosting Soft Actor-Critic: Emphasizing Recent Experience
without Forgetting the Past,” arXiv, Jun. 2019. doi: 10.48550/arXiv.1906.04009.

[89] C. Florensa, D. Held, M. Wulfmeier, M. Zhang, and P. Abbeel, “Reverse Curriculum
Generation for Reinforcement Learning,” arXiv, Jul. 2018. doi: 10.48550/arXiv.
1707.05300.

[90] B. Ivanovic, J. Harrison, A. Sharma, M. Chen, and M. Pavone, “BaRC: Backward
Reachability Curriculum for Robotic Reinforcement Learning,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA), May 2019, pp. 15–21. doi:
10.1109/ICRA.2019.8794206.

[91] T. Salimans and R. Chen, “Learning Montezuma’s Revenge from a Single Demon-
stration,” arXiv, Dec. 2018. doi: 10.48550/arXiv.1812.03381.

[92] S. Sukhbaatar, Z. Lin, I. Kostrikov, et al., “Intrinsic Motivation and Automatic
Curricula via Asymmetric Self-Play,” arXiv, Apr. 2018. doi: 10.48550/arXiv.
1703.05407.

[93] C. Florensa, D. Held, X. Geng, and P. Abbeel, “Automatic Goal Generation for
Reinforcement Learning Agents,” arXiv, Jul. 2018. doi: 10.48550/arXiv.1705.
06366.

[94] V. H. Pong, M. Dalal, S. Lin, et al., “Skew-Fit: State-Covering Self-Supervised
Reinforcement Learning,” arXiv, Aug. 2020. doi: 10.48550/arXiv.1903.03698.

[95] S. Racaniere, A. K. Lampinen, A. Santoro, et al., “Automated Curricula Through
Setter-Solver Interactions,” arXiv, Jan. 2020. doi: 10.48550/arXiv.1909.12892.

[96] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum Learning,”
in Proceedings of the 26th Annual International Conference on Machine Learn-
ing (ICML), Association for Computing Machinery, Jun. 2009, pp. 41–48, isbn:
9781605585161. doi: 10.1145/1553374.1553380.

170

https://doi.org/10.48550/arXiv.2201.03834
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.48550/arXiv.1806.05635
https://doi.org/10.48550/arXiv.1906.04009
https://doi.org/10.48550/arXiv.1707.05300
https://doi.org/10.48550/arXiv.1707.05300
https://doi.org/10.1109/ICRA.2019.8794206
https://doi.org/10.48550/arXiv.1812.03381
https://doi.org/10.48550/arXiv.1703.05407
https://doi.org/10.48550/arXiv.1703.05407
https://doi.org/10.48550/arXiv.1705.06366
https://doi.org/10.48550/arXiv.1705.06366
https://doi.org/10.48550/arXiv.1903.03698
https://doi.org/10.48550/arXiv.1909.12892
https://doi.org/10.1145/1553374.1553380

[97] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer, “Automatic Cur-
riculum Learning For Deep RL: A Short Survey,” arXiv, May 2020. doi: 10.48550/
arXiv.2003.04664.

[98] X. Wang, Y. Chen, and W. Zhu, “A Survey on Curriculum Learning,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 9, pp. 4555–4576,
Sep. 2022, issn: 1939-3539. doi: 10.1109/TPAMI.2021.3069908.

[99] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine, “Collective Robot
Reinforcement Learning with Distributed Asynchronous Guided Policy Search,”
in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Sep. 2017, pp. 79–86. doi: 10.1109/IROS.2017.8202141.

[100] H. Zhu, A. Gupta, A. Rajeswaran, S. Levine, and V. Kumar, “Dexterous Manip-
ulation with Deep Reinforcement Learning: Efficient, General, and Low-Cost,” in
2019 International Conference on Robotics and Automation (ICRA), May 2019,
pp. 3651–3657. doi: 10.1109/ICRA.2019.8794102.

[101] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar, “Deep Dynamics Mod-
els for Learning Dexterous Manipulation,” in Proceedings of the Conference on
Robot Learning, PMLR, May 2020, pp. 1101–1112. [Online]. Available: https :

//proceedings.mlr.press/v100/nagabandi20a.html (visited on 09/10/2024).

[102] H. Zhu, J. Yu, A. Gupta, et al., “The Ingredients of Real-World Robotic Reinforce-
ment Learning,” arXiv, Apr. 2020. doi: 10.48550/arXiv.2004.12570.

[103] R. Szeliski, Computer Vision: Algorithms and Applications (Texts in Computer
Science). Springer International Publishing, 2022, isbn: 9783030343712. doi: 10.
1007/978-3-030-34372-9.

[104] R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, 2004, isbn: 9780521540513.

[105] A. Ouaknine, Review of Deep Learning Algorithms for Object Detection, Medium,
Feb. 2018. [Online]. Available: https : / / medium . com / zylapp / review - of -

deep- learning- algorithms- for- object- detection- c1f3d437b852 (visited
on 09/10/2024).

[106] Y. LeCun, B. Boser, J. S. Denker, et al., “Backpropagation Applied to Handwritten
Zip Code Recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551, Dec. 1989,
issn: 0899-7667. doi: 10.1162/neco.1989.1.4.541.

[107] O. Russakovsky, J. Deng, H. Su, et al., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252,
Dec. 2015, issn: 1573-1405. doi: 10.1007/s11263-015-0816-y.

171

https://doi.org/10.48550/arXiv.2003.04664
https://doi.org/10.48550/arXiv.2003.04664
https://doi.org/10.1109/TPAMI.2021.3069908
https://doi.org/10.1109/IROS.2017.8202141
https://doi.org/10.1109/ICRA.2019.8794102
https://proceedings.mlr.press/v100/nagabandi20a.html
https://proceedings.mlr.press/v100/nagabandi20a.html
https://doi.org/10.48550/arXiv.2004.12570
https://doi.org/10.1007/978-3-030-34372-9
https://doi.org/10.1007/978-3-030-34372-9
https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://medium.com/zylapp/review-of-deep-learning-algorithms-for-object-detection-c1f3d437b852
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1007/s11263-015-0816-y

[108] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. The MIT Press, 2016,
isbn: 9780262035613.

[109] Zhou and Chellappa, “Computation of Optical Flow Using a Neural Network,” in
IEEE 1988 International Conference on Neural Networks, Jul. 1988, 71–78 vol.2.
doi: 10.1109/ICNN.1988.23914.

[110] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A Theoretical Analysis of Feature Pool-
ing in Visual Recognition,” in Proceedings of the 27th International Conference
on International Conference on Machine Learning (ICML), Omnipress, Jun. 2010,
pp. 111–118, isbn: 9781605589077. [Online]. Available: https://dl.acm.org/doi/
10.5555/3104322.3104338 (visited on 09/10/2024).

[111] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale
Image Recognition,” arXiv, Apr. 2015. doi: 10.48550/arXiv.1409.1556.

[112] J. Jordan, Common Architectures in Convolutional Neural Networks. Apr. 2018.
[Online]. Available: https://www.jeremyjordan.me/convnet-architectures/
(visited on 09/24/2024).

[113] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale,” arXiv, Jun. 2021. doi: 10.48550/
arXiv.2010.11929.

[114] Y. Liu, Y. Zhang, Y. Wang, et al., “A Survey of Visual Transformers,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 35, no. 6, pp. 7478–7498,
Jun. 2024, issn: 2162-2388. doi: 10.1109/TNNLS.2022.3227717.

[115] H. Rezatofighi, N. Tsoi, J. Gwak, et al., “Generalized Intersection Over Union: A
Metric and a Loss for Bounding Box Regression,” in 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, Jun. 2019, pp. 658–
666, isbn: 9781728132938. doi: 10.1109/CVPR.2019.00075.

[116] Biggerj1, PR Curve with Optimal F-score, Wikipedia, 2023. [Online]. Available:
https://en.m.wikipedia.org/wiki/File:PR_curve_with_optimal_fscore.

png (visited on 09/10/2024).

[117] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich Feature Hierarchies for
Accurate Object Detection and Semantic Segmentation,” in 2014 IEEE Conference
on Computer Vision and Pattern Recognition, Jun. 2014, pp. 580–587. doi: 10.
1109/CVPR.2014.81.

172

https://doi.org/10.1109/ICNN.1988.23914
https://dl.acm.org/doi/10.5555/3104322.3104338
https://dl.acm.org/doi/10.5555/3104322.3104338
https://doi.org/10.48550/arXiv.1409.1556
https://www.jeremyjordan.me/convnet-architectures/
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/TNNLS.2022.3227717
https://doi.org/10.1109/CVPR.2019.00075
https://en.m.wikipedia.org/wiki/File:PR_curve_with_optimal_fscore.png
https://en.m.wikipedia.org/wiki/File:PR_curve_with_optimal_fscore.png
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81

[118] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial Pyramid Pooling in Deep Con-
volutional Networks for Visual Recognition,” in the 13th European Conference on
Computer Vision (ECCV), ser. Lecture Notes in Computer Science, Springer Inter-
national Publishing, 2014, pp. 346–361, isbn: 9783319105789. doi: 10.1007/978-
3-319-10578-9_23.

[119] R. Girshick, “Fast R-CNN,” in 2015 IEEE International Conference on Computer
Vision (ICCV), Dec. 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.169.

[120] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, Jun. 2017, issn: 0162-8828,
2160-9292. doi: 10.1109/TPAMI.2016.2577031.

[121] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,
Real-Time Object Detection,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 779–788, isbn: 9781467388511.
doi: 10.1109/CVPR.2016.91.

[122] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Jul. 2017,
pp. 6517–6525, isbn: 9781538604571. doi: 10.1109/CVPR.2017.690.

[123] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” arXiv, Apr.
2018. doi: 10.48550/arXiv.1804.02767.

[124] W. Liu, D. Anguelov, D. Erhan, et al., “SSD: Single Shot MultiBox Detector,” in
the 14th European Conference on Computer Vision (ECCV), Springer International
Publishing, 2016, pp. 21–37, isbn: 9783319464480. doi: 10.1007/978- 3- 319-
46448-0_2.

[125] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal Loss for Dense Ob-
ject Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 42, no. 2, pp. 318–327, Feb. 2020, issn: 1939-3539. doi: 10.1109/TPAMI.2018.
2858826.

[126] Ultralytics, Documentation of YOLOv5. [Online]. Available: https : / / docs .

ultralytics.com/yolov5 (visited on 09/10/2024).

[127] C. Li, L. Li, H. Jiang, et al., “YOLOv6: A Single-Stage Object Detection Framework
for Industrial Applications,” arXiv, Sep. 2022. doi: 10.48550/arXiv.2209.02976.

[128] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, “YOLOv7: Trainable Bag-of-
Freebies Sets New State-of-the-Art for Real-Time Object Detectors,” arXiv, Jul.
2022. doi: 10.48550/arXiv.2207.02696.

173

https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1007/978-3-319-10578-9_23
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/TPAMI.2018.2858826
https://doi.org/10.1109/TPAMI.2018.2858826
https://docs.ultralytics.com/yolov5
https://docs.ultralytics.com/yolov5
https://doi.org/10.48550/arXiv.2209.02976
https://doi.org/10.48550/arXiv.2207.02696

[129] Ultralytics, Documentation of YOLOv8. [Online]. Available: https : / / docs .

ultralytics.com/models/yolov8 (visited on 09/10/2024).

[130] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, “YOLOv9: Learning What You Want
to Learn Using Programmable Gradient Information,” arXiv, Feb. 2024. doi: 10.
48550/arXiv.2402.13616.

[131] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion,” in the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

[132] Z. Zou, Z. Shi, Y. Guo, and J. Ye, “Object Detection in 20 Years: A Survey,” arXiv,
May 2019. doi: 10.48550/arXiv.1905.05055.

[133] F. Zhuang, Z. Qi, K. Duan, et al., “A Comprehensive Survey on Transfer Learning,”
Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021, issn: 1558-2256. doi:
10.1109/JPROC.2020.3004555.

[134] O. Day and T. M. Khoshgoftaar, “A Survey on Heterogeneous Transfer Learning,”
Journal of Big Data, vol. 4, no. 1, p. 29, Sep. 2017, issn: 2196-1115. doi: 10.1186/
s40537-017-0089-0.

[135] M. Sugiyama, T. Suzuki, S. Nakajima, et al., “Direct Importance Estimation for
Covariate Shift Adaptation,” Annals of the Institute of Statistical Mathematics,
vol. 60, no. 4, pp. 699–746, Dec. 2008, issn: 1572-9052. doi: 10.1007/s10463-008-
0197-x.

[136] Z. Wang, Z. Dai, B. Poczos, and J. Carbonell, “Characterizing and Avoiding Neg-
ative Transfer,” in 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, Jun. 2019, pp. 11 285–11 294, isbn: 9781728132938.
doi: 10.1109/CVPR.2019.01155.

[137] B. O. Community, Blender - a 3D Modelling and Rendering Package, Blender
Foundation, 2018. [Online]. Available: http : / / www . blender . org (visited on
09/10/2024).

[138] D. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” in the 2nd In-
ternational Conference on Learning Representations (ICLR), May 2014. doi: 10.
48550/arXiv.1312.6114.

[139] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative Adversarial Net-
works,” arXiv, Jun. 2014. doi: 10.48550/arXiv.1406.2661.

[140] N. Jakobi, “Evolutionary Robotics and the Radical Envelope-of-Noise Hypothesis,”
Adaptive Behavior, vol. 6, no. 2, pp. 325–368, Sep. 1997, issn: 1059-7123. doi:
10.1177/105971239700600205.

174

https://docs.ultralytics.com/models/yolov8
https://docs.ultralytics.com/models/yolov8
https://doi.org/10.48550/arXiv.2402.13616
https://doi.org/10.48550/arXiv.2402.13616
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.1905.05055
https://doi.org/10.1109/JPROC.2020.3004555
https://doi.org/10.1186/s40537-017-0089-0
https://doi.org/10.1186/s40537-017-0089-0
https://doi.org/10.1007/s10463-008-0197-x
https://doi.org/10.1007/s10463-008-0197-x
https://doi.org/10.1109/CVPR.2019.01155
http://www.blender.org
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.1177/105971239700600205

[141] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal Value Function Ap-
proximators,” in Proceedings of the 32nd International Conference on Machine
Learning, vol. 37, PMLR, Jul. 2015, pp. 1312–1320. [Online]. Available: https:
//proceedings.mlr.press/v37/schaul15.html (visited on 09/10/2024).

[142] J. Ramı́rez, W. Yu, and A. Perrusqúıa, “Model-Free Reinforcement Learning from
Expert Demonstrations: A Survey,” Artificial Intelligence Review, vol. 55, no. 4,
pp. 3213–3241, Apr. 2022, issn: 1573-7462. doi: 10.1007/s10462-021-10085-1.

[143] R. E. Bellman, Dynamic Programming. Princeton University Press, 1957, isbn:
9780691079516.

[144] R. S. Sutton, “Integrated Architectures for Learning, Planning, and Reacting Based
on Approximating Dynamic Programming,” in Machine Learning Proceedings 1990,
Morgan Kaufmann, Jan. 1990, pp. 216–224, isbn: 9781558601413. doi: 10.1016/
B978-1-55860-141-3.50030-4.

[145] C. Watkins, “Learning From Delayed Rewards,” Ph.D. thesis, University of Cam-
bridge., Jan. 1989.

[146] G. Rummery and M. Niranjan, “On-Line Q-Learning Using Connectionist Systems,”
Technical Report CUED/F-INFENG/TR 166, Nov. 1994.

[147] R. J. Williams, “Simple Statistical Gradient-Following Algorithms for Connectionist
Reinforcement Learning,” Machine Learning, vol. 8, no. 3, pp. 229–256, May 1992,
issn: 1573-0565. doi: 10.1007/BF00992696.

[148] V. Mnih, A. P. Badia, M. Mirza, et al., “Asynchronous Methods for Deep Re-
inforcement Learning,” in Proceedings of The 33rd International Conference on
Machine Learning, PMLR, Jun. 2016, pp. 1928–1937. [Online]. Available: https:
//proceedings.mlr.press/v48/mniha16.html (visited on 09/10/2024).

[149] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal Policy
Optimization Algorithms,” arXiv, Aug. 2017. doi: 10.48550/arXiv.1707.06347.

[150] P. Auer, “Using Confidence Bounds for Exploitation-Exploration Trade-offs,” Jour-
nal of Machine Learning Research, vol. 3, no. Nov, pp. 397–422, Nov. 2002, issn:
1533-7928. [Online]. Available: https://www.jmlr.org/papers/v3/auer02a.html
(visited on 09/10/2024).

[151] R. S. Sutton, “Generalization in Reinforcement Learning: Successful Examples Us-
ing Sparse Coarse Coding,” in Advances in Neural Information Processing Systems,
vol. 8, MIT Press, 1995. [Online]. Available: https://proceedings.neurips.
cc / paper _ files / paper / 1995 / hash / 8f1d43620bc6bb580df6e80b0dc05c48 -

Abstract.html (visited on 09/10/2024).

175

https://proceedings.mlr.press/v37/schaul15.html
https://proceedings.mlr.press/v37/schaul15.html
https://doi.org/10.1007/s10462-021-10085-1
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
https://doi.org/10.1007/BF00992696
https://proceedings.mlr.press/v48/mniha16.html
https://proceedings.mlr.press/v48/mniha16.html
https://doi.org/10.48550/arXiv.1707.06347
https://www.jmlr.org/papers/v3/auer02a.html
https://proceedings.neurips.cc/paper_files/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/1995/hash/8f1d43620bc6bb580df6e80b0dc05c48-Abstract.html

[152] Z. I. Botev, D. P. Kroese, R. Y. Rubinstein, and P. L’Ecuyer, Chapter 3 - The
Cross-Entropy Method for Optimization (Handbook of Statistics). Elsevier, Jan.
2013, vol. 31, pp. 35–59. doi: 10.1016/B978-0-444-53859-8.00003-5.

[153] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust Region
Policy Optimization,” arXiv, Apr. 2017. doi: 10.48550/arXiv.1502.05477.

[154] Y. Wu, E. Mansimov, S. Liao, R. Grosse, and J. Ba, “Scalable Trust-Region
Method for Deep Reinforcement Learning Using Kronecker-Factored Approxima-
tion,” arXiv, Aug. 2017. doi: 10.48550/arXiv.1708.05144.

[155] S. C. Y. Chan, S. Fishman, A. Korattikara, J. Canny, and S. Guadarrama, “Mea-
suring the Reliability of Reinforcement Learning Algorithms,” in the 8th Interna-
tional Conference on Learning Representations (ICLR), Apr. 2020. [Online]. Avail-
able: https://iclr.cc/virtual_2020/poster_SJlpYJBKvH.html (visited on
09/10/2024).

[156] C. Colas, O. Sigaud, and P.-Y. Oudeyer, “How Many Random Seeds? Statistical
Power Analysis in Deep Reinforcement Learning Experiments,” arXiv, Jul. 2018.
doi: 10.48550/arXiv.1806.08295.

[157] P. Henderson, R. Islam, P. Bachman, et al., “Deep Reinforcement Learning That
Matters,” 1, vol. 32, Apr. 2018, pp. 3207–3214. doi: 10.1609/aaai.v32i1.11694.

[158] R. Agarwal, M. Schwarzer, P. S. Castro, A. C. Courville, and M. Bellemare, “Deep
Reinforcement Learning at the Edge of the Statistical Precipice,” in Advances in
Neural Information Processing Systems, vol. 34, Curran Associates, Inc., 2021,
pp. 29 304–29 320. [Online]. Available: https://proceedings.neurips.cc/paper/
2021 / hash / f514cec81cb148559cf475e7426eed5e - Abstract . html (visited on
09/10/2024).

[159] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The Arcade Learning
Environment: An Evaluation Platform for General Agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, Jun. 2013, issn: 1076-9757. doi: 10.
1613/jair.3912.

[160] O. G. Selfridge, R. S. Sutton, and A. G. Barto, “Training and Tracking in Robotics,”
in Proceedings of the 9th international joint conference on Artificial intelligence,
ser. IJCAI’85, Morgan Kaufmann Publishers Inc., Aug. 1985, pp. 670–672, isbn:
9780934613026. [Online]. Available: https://dl.acm.org/doi/10.5555/1625135.
1625265 (visited on 09/10/2024).

[161] E. L. Allgower and K. Georg, Numerical Continuation Methods: An Introduction.
Springer Science and Business Media, Dec. 2012, isbn: 9783642612572.

176

https://doi.org/10.1016/B978-0-444-53859-8.00003-5
https://doi.org/10.48550/arXiv.1502.05477
https://doi.org/10.48550/arXiv.1708.05144
https://iclr.cc/virtual_2020/poster_SJlpYJBKvH.html
https://doi.org/10.48550/arXiv.1806.08295
https://doi.org/10.1609/aaai.v32i1.11694
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/f514cec81cb148559cf475e7426eed5e-Abstract.html
https://doi.org/10.1613/jair.3912
https://doi.org/10.1613/jair.3912
https://dl.acm.org/doi/10.5555/1625135.1625265
https://dl.acm.org/doi/10.5555/1625135.1625265

[162] T. Gong, Q. Zhao, D. Meng, and Z. Xu, “Why Curriculum Learning and Self-
Paced Learning Work in Big/Noisy Data: A Theoretical Perspective,” Big Data
and Information Analytics, vol. 1, no. 1, pp. 111–127, Sep. 2015, issn: 2380-6966.
doi: 10.3934/bdia.2016.1.111.

[163] Y. Bengio, “Evolving Culture Versus Local Minima,” in Growing Adaptive Ma-
chines: Combining Development and Learning in Artificial Neural Networks,
Springer, 2014, pp. 109–138, isbn: 9783642553370. doi: 10.1007/978- 3- 642-
55337-0_3.

[164] Y. Fan, F. Tian, T. Qin, X.-Y. Li, and T.-Y. Liu, “Learning to Teach,” arXiv, May
2018. doi: 10.48550/arXiv.1805.03643.

[165] W. Wang, I. Caswell, and C. Chelba, “Dynamically Composing Domain-Data Se-
lection with Clean-Data Selection by “Co-Curricular Learning” for Neural Machine
Translation,” in Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, Association for Computational Linguistics, Jul. 2019,
pp. 1282–1292. doi: 10.18653/v1/P19-1123.

[166] S. Jin, A. RoyChowdhury, H. Jiang, et al., “Unsupervised Hard Example Min-
ing from Videos for Improved Object Detection,” in the 15th European Confer-
ence on Computer Vision (ECCV), Springer-Verlag, Sep. 2018, pp. 316–333, isbn:
9783030012601. doi: 10.1007/978-3-030-01261-8_19.

[167] A. Shrivastava, A. Gupta, and R. Girshick, “Training Region-Based Object De-
tectors with Online Hard Example Mining,” in 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), IEEE, Jun. 2016, pp. 761–769, isbn:
9781467388511. doi: 10.1109/CVPR.2016.89.

[168] G. Hacohen and D. Weinshall, “On The Power of Curriculum Learning in Train-
ing Deep Networks,” in Proceedings of the 36th International Conference on Ma-
chine Learning, PMLR, May 2019, pp. 2535–2544. [Online]. Available: https://
proceedings.mlr.press/v97/hacohen19a.html (visited on 09/10/2024).

[169] E. A. Platanios, O. Stretcu, G. Neubig, B. Poczos, and T. Mitchell, “Competence-
Based Curriculum Learning for Neural Machine Translation,” in Proceedings of the
2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Association for Computational
Linguistics, Jun. 2019, pp. 1162–1172. doi: 10.18653/v1/N19-1119.

177

https://doi.org/10.3934/bdia.2016.1.111
https://doi.org/10.1007/978-3-642-55337-0_3
https://doi.org/10.1007/978-3-642-55337-0_3
https://doi.org/10.48550/arXiv.1805.03643
https://doi.org/10.18653/v1/P19-1123
https://doi.org/10.1007/978-3-030-01261-8_19
https://doi.org/10.1109/CVPR.2016.89
https://proceedings.mlr.press/v97/hacohen19a.html
https://proceedings.mlr.press/v97/hacohen19a.html
https://doi.org/10.18653/v1/N19-1119

[170] V. I. Spitkovsky, H. Alshawi, and D. Jurafsky, “From Baby Steps to Leapfrog:
How “Less is More” in Unsupervised Dependency Parsing,” in Human Language
Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics, Association for Computational Linguis-
tics, Jun. 2010, pp. 751–759. [Online]. Available: https://aclanthology.org/N10-
1116 (visited on 09/10/2024).

[171] Y. Tay, S. Wang, A. T. Luu, et al., “Simple and Effective Curriculum Pointer-
Generator Networks for Reading Comprehension over Long Narratives,” in Pro-
ceedings of the 57th Annual Meeting of the Association for Computational Lin-
guistics, Association for Computational Linguistics, Jul. 2019, pp. 4922–4931. doi:
10.18653/v1/P19-1486.

[172] M. Kumar, B. Packer, and D. Koller, “Self-Paced Learning for Latent Variable
Models,” in Advances in Neural Information Processing Systems, vol. 23, Curran
Associates, Inc., 2010. [Online]. Available: https://papers.nips.cc/paper_
files/paper/2010/hash/e57c6b956a6521b28495f2886ca0977a-Abstract.html

(visited on 09/10/2024).

[173] C. Li, F. Wei, J. Yan, et al., “A Self-Paced Regularization Framework for Multilabel
Learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 6, pp. 2660–2666, Jun. 2018, issn: 2162-2388. doi: 10.1109/TNNLS.2017.
2697767.

[174] D. Weinshall, G. Cohen, and D. Amir, “Curriculum Learning by Transfer Learning:
Theory and Experiments with Deep Networks,” in Proceedings of the 35th Interna-
tional Conference on Machine Learning, PMLR, Jul. 2018, pp. 5238–5246. [Online].
Available: https://proceedings.mlr.press/v80/weinshall18a.html (visited
on 09/10/2024).

[175] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman, “Teacher–Student Curriculum
Learning,” IEEE Transactions on Neural Networks and Learning Systems, vol. 31,
no. 9, pp. 3732–3740, Sep. 2020, issn: 2162-2388. doi: 10.1109/TNNLS.2019.
2934906.

[176] Y. Tsvetkov, M. Faruqui, W. Ling, B. MacWhinney, and C. Dyer, “Learning the
Curriculum with Bayesian Optimization for Task-Specific Word Representation
Learning,” in Proceedings of the 54th Annual Meeting of the Association for Compu-
tational Linguistics, Association for Computational Linguistics, Aug. 2016, pp. 130–
139. doi: 10.18653/v1/P16-1013.

178

https://aclanthology.org/N10-1116
https://aclanthology.org/N10-1116
https://doi.org/10.18653/v1/P19-1486
https://papers.nips.cc/paper_files/paper/2010/hash/e57c6b956a6521b28495f2886ca0977a-Abstract.html
https://papers.nips.cc/paper_files/paper/2010/hash/e57c6b956a6521b28495f2886ca0977a-Abstract.html
https://doi.org/10.1109/TNNLS.2017.2697767
https://doi.org/10.1109/TNNLS.2017.2697767
https://proceedings.mlr.press/v80/weinshall18a.html
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.1109/TNNLS.2019.2934906
https://doi.org/10.18653/v1/P16-1013

[177] D. Zhang, H. Tian, and J. Han, “Few-Cost Salient Object Detection with
Adversarial-Paced Learning,” in Advances in Neural Information Processing
Systems, vol. 33, Curran Associates, Inc., 2020, pp. 12 236–12 247. [Online].
Available: https : / / proceedings . neurips . cc / paper / 2020 / hash /

8fc687aa152e8199fe9e73304d407bca-Abstract.html (visited on 09/10/2024).

[178] M. Bellemare, S. Srinivasan, G. Ostrovski, et al., “Unifying Count-Based Ex-
ploration and Intrinsic Motivation,” in Advances in Neural Information Pro-
cessing Systems, vol. 29, Curran Associates, Inc., 2016. [Online]. Available:
https : / / papers . nips . cc / paper _ files / paper / 2016 / hash /

afda332245e2af431fb7b672a68b659d-Abstract.html (visited on 09/10/2024).

[179] D. Pathak, P. Agrawal, A. A. Efros, and T. Darrell, “Curiosity-Driven Exploration
by Self-Supervised Prediction,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), Jul. 2017, pp. 488–489. doi: 10.1109/
CVPRW.2017.70.

[180] S. Risi and J. Togelius, “Increasing Generality in Machine Learning through Proce-
dural Content Generation,” arXiv, Mar. 2020. doi: 10.48550/arXiv.1911.13071.

[181] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch, “Emergent Com-
plexity via Multi-Agent Competition,” arXiv, Mar. 2018. doi: 10.48550/arXiv.
1710.03748.

[182] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “TossingBot: Learn-
ing to Throw Arbitrary Objects With Residual Physics,” IEEE Transactions on
Robotics, vol. 36, no. 4, pp. 1307–1319, Aug. 2020, issn: 1941-0468. doi: 10.1109/
TRO.2020.2988642.

[183] I. Alonso, L. Riazuelo, and A. C. Murillo, “MiniNet: An Efficient Semantic Seg-
mentation ConvNet for Real-Time Robotic Applications,” IEEE Transactions on
Robotics, vol. 36, no. 4, pp. 1340–1347, Aug. 2020, issn: 1941-0468. doi: 10.1109/
TRO.2020.2974099.

[184] A. Pashevich, R. Strudel, I. Kalevatykh, I. Laptev, and C. Schmid, “Learning to
Augment Synthetic Images for Sim2Real Policy Transfer,” in 2019 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), Nov. 2019, pp. 2651–
2657. doi: 10.1109/IROS40897.2019.8967622.

[185] K. Bousmalis, A. Irpan, P. Wohlhart, et al., “Using Simulation and Domain Adapta-
tion to Improve Efficiency of Deep Robotic Grasping,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), May 2018, pp. 4243–4250. doi:
10.1109/ICRA.2018.8460875.

179

https://proceedings.neurips.cc/paper/2020/hash/8fc687aa152e8199fe9e73304d407bca-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/8fc687aa152e8199fe9e73304d407bca-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/afda332245e2af431fb7b672a68b659d-Abstract.html
https://doi.org/10.1109/CVPRW.2017.70
https://doi.org/10.1109/CVPRW.2017.70
https://doi.org/10.48550/arXiv.1911.13071
https://doi.org/10.48550/arXiv.1710.03748
https://doi.org/10.48550/arXiv.1710.03748
https://doi.org/10.1109/TRO.2020.2988642
https://doi.org/10.1109/TRO.2020.2988642
https://doi.org/10.1109/TRO.2020.2974099
https://doi.org/10.1109/TRO.2020.2974099
https://doi.org/10.1109/IROS40897.2019.8967622
https://doi.org/10.1109/ICRA.2018.8460875

[186] J. Tobin, R. Fong, A. Ray, et al., “Domain Randomization for Transferring Deep
Neural Networks from Simulation to the Real World,” in 2017 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp. 23–30.
doi: 10.1109/IROS.2017.8202133.

[187] A. Dehban, J. Borrego, R. Figueiredo, et al., “The Impact of Domain Randomiza-
tion on Object Detection: A Case Study on Parametric Shapes and Synthetic Tex-
tures,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), Nov. 2019, pp. 2593–2600. doi: 10.1109/IROS40897.2019.8968139.

[188] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A Physics Engine for Model-Based
Control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[189] J. Borrego, R. Figueiredo, A. Dehban, et al., “A Generic Visual Perception Domain
Randomisation Framework for Gazebo,” in 2018 IEEE International Conference on
Autonomous Robot Systems and Competitions (ICARSC), Apr. 2018, pp. 237–242,
isbn: 9781538652213. doi: 10.1109/ICARSC.2018.8374189.

[190] N. Koenig and A. Howard, “Design and Use Paradigms for Gazebo, an Open-Source
Multi-Robot Simulator,” in 2004 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, Sep. 2004, 2149–
2154 vol.3. doi: 10.1109/IROS.2004.1389727.

[191] K. Perlin, “Improving Noise,” ACM Transactions on Graphics, vol. 21, no. 3,
pp. 681–682, Jul. 2002, issn: 0730-0301. doi: 10.1145/566654.566636.

[192] E. Coumans and Y. Bai, PyBullet, a Python Module for Physics Simulation for
Games, Robotics and Machine Learning. [Online]. Available: http://pybullet.org
(visited on 09/10/2024).

[193] R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree
Search,” in Computers and Games, ser. Lecture Notes in Computer Science,
Springer, 2007, pp. 72–83, isbn: 9783540755388. doi: 10.1007/978-3-540-75538-
8_7.

[194] T. DeVries and G. W. Taylor, “Improved Regularization of Convolutional Neural
Networks with Cutout,” arXiv, Nov. 2017. doi: 10.48550/arXiv.1708.04552.

[195] S. James, A. J. Davison, and E. Johns, “Transferring End-to-End Visuomotor Con-
trol from Simulation to Real World for a Multi-Stage Task,” arXiv, Oct. 2017. doi:
10.48550/arXiv.1707.02267.

180

https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/IROS40897.2019.8968139
https://doi.org/10.1109/IROS.2012.6386109
https://doi.org/10.1109/ICARSC.2018.8374189
https://doi.org/10.1109/IROS.2004.1389727
https://doi.org/10.1145/566654.566636
http://pybullet.org
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.48550/arXiv.1708.04552
https://doi.org/10.48550/arXiv.1707.02267

[196] A. Devo, G. Mezzetti, G. Costante, M. L. Fravolini, and P. Valigi, “Towards Gener-
alization in Target-Driven Visual Navigation by Using Deep Reinforcement Learn-
ing,” IEEE Transactions on Robotics, vol. 36, no. 5, pp. 1546–1561, Oct. 2020, issn:
1941-0468. doi: 10.1109/TRO.2020.2994002.

[197] Epic Games, Unreal engine, version 4.22.1. [Online]. Available: https : / / www .
unrealengine.com (visited on 09/10/2024).

[198] Y. Chen, W. Li, C. Sakaridis, D. Dai, and L. Van Gool, “Domain Adaptive Faster
R-CNN for Object Detection in the Wild,” in 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, Jun. 2018, pp. 3339–3348. doi: 10.1109/
CVPR.2018.00352.

[199] M. Johnson-Roberson, C. Barto, R. Mehta, et al., “Driving in the Matrix: Can
Virtual Worlds Replace Human-Generated Annotations for Real World Tasks?” In
2017 IEEE International Conference on Robotics and Automation (ICRA), May
2017, pp. 746–753, isbn: 9781509046331. doi: 10.1109/ICRA.2017.7989092.

[200] C. Sakaridis, D. Dai, and L. Van Gool, “Semantic Foggy Scene Understanding with
Synthetic Data,” International Journal of Computer Vision, vol. 126, no. 9, pp. 973–
992, Sep. 2018, issn: 1573-1405. doi: 10.1007/s11263-018-1072-8.

[201] S. Sankaranarayanan, Y. Balaji, A. Jain, S. N. Lim, and R. Chellappa, “Learning
from Synthetic Data: Addressing Domain Shift for Semantic Segmentation,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun. 2018,
pp. 3752–3761. doi: 10.1109/CVPR.2018.00395.

[202] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The SYNTHIA
Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Ur-
ban Scenes,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jun. 2016, pp. 3234–3243. doi: 10.1109/CVPR.2016.352.

[203] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground Truth
from Computer Games,” in the 14th European Conference on Computer Vision
(ECCV), ser. Lecture Notes in Computer Science, Springer International Publishing,
2016, pp. 102–118, isbn: 9783319464756. doi: 10.1007/978-3-319-46475-6_7.

[204] J. Tremblay, A. Prakash, D. Acuna, et al., “Training Deep Networks with Synthetic
Data: Bridging the Reality Gap by Domain Randomization,” in 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
Jun. 2018, pp. 1082–10 828. doi: 10.1109/CVPRW.2018.00143.

181

https://doi.org/10.1109/TRO.2020.2994002
https://www.unrealengine.com
https://www.unrealengine.com
https://doi.org/10.1109/CVPR.2018.00352
https://doi.org/10.1109/CVPR.2018.00352
https://doi.org/10.1109/ICRA.2017.7989092
https://doi.org/10.1007/s11263-018-1072-8
https://doi.org/10.1109/CVPR.2018.00395
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1109/CVPRW.2018.00143

[205] A. Geiger, P. Lenz, and R. Urtasun, “Are We Ready for Autonomous Driving? The
KITTI Vision Benchmark Suite,” in 2012 IEEE Conference on Computer Vision
and Pattern Recognition, Jun. 2012, pp. 3354–3361. doi: 10.1109/CVPR.2012.
6248074.

[206] J. Dai, Y. Li, K. He, and J. Sun, “R-FCN: Object Detection via Region-Based Fully
Convolutional Networks,” in Advances in Neural Information Processing Systems,
vol. 29, Curran Associates, Inc., 2016. [Online]. Available: https://papers.nips.
cc / paper _ files / paper / 2016 / hash / 577ef1154f3240ad5b9b413aa7346a1e -

Abstract.html (visited on 09/10/2024).

[207] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, “VirtualWorlds as Proxy for Multi-
Object Tracking Analysis,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Jun. 2016, pp. 4340–4349. doi: 10.1109/CVPR.2016.
470.

[208] Poly Haven. [Online]. Available: https://polyhaven.com/ (visited on 09/10/2024).

[209] S. Hinterstoisser, V. Lepetit, P. Wohlhart, and K. Konolige, “On Pre-Trained Image
Features and Synthetic Images for Deep Learning,” arXiv, Nov. 2017. doi: 10.
48550/arXiv.1710.10710.

[210] B. T. Phong, “Illumination for Computer Generated Pictures,” Communications of
the ACM, vol. 18, no. 6, pp. 311–317, Jun. 1975, issn: 0001-0782. doi: 10.1145/
360825.360839.

[211] F. Zhang, J. Leitner, Z. Ge, M. Milford, and P. Corke, “Adversarial Discrimina-
tive Sim-to-Real Transfer of Visuo-Motor Policies,” The International Journal of
Robotics Research, vol. 38, no. 10-11, pp. 1229–1245, Sep. 2019, issn: 0278-3649.
doi: 10.1177/0278364919870227.

[212] H. M. Clever, P. Grady, G. Turk, and C. C. Kemp, “BodyPressure – Inferring
Body Pose and Contact Pressure from a Depth Image,” arXiv, May 2021. doi:
10.48550/arXiv.2105.09936.

[213] H. M. Clever, Z. Erickson, A. Kapusta, et al., “Bodies at Rest: 3D Human Pose
and Shape Estimation From a Pressure Image Using Synthetic Data,” in 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun.
2020, pp. 6214–6223. doi: 10.1109/CVPR42600.2020.00625.

[214] S. Liu, X. Huang, N. Fu, et al., “Simultaneously-Collected Multimodal Lying Pose
Dataset: Towards In-Bed Human Pose Monitoring under Adverse Vision Condi-
tions,” arXiv, Aug. 2020. doi: 10.48550/arXiv.2008.08735.

182

https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/CVPR.2012.6248074
https://papers.nips.cc/paper_files/paper/2016/hash/577ef1154f3240ad5b9b413aa7346a1e-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/577ef1154f3240ad5b9b413aa7346a1e-Abstract.html
https://papers.nips.cc/paper_files/paper/2016/hash/577ef1154f3240ad5b9b413aa7346a1e-Abstract.html
https://doi.org/10.1109/CVPR.2016.470
https://doi.org/10.1109/CVPR.2016.470
https://polyhaven.com/
https://doi.org/10.48550/arXiv.1710.10710
https://doi.org/10.48550/arXiv.1710.10710
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/360825.360839
https://doi.org/10.1177/0278364919870227
https://doi.org/10.48550/arXiv.2105.09936
https://doi.org/10.1109/CVPR42600.2020.00625
https://doi.org/10.48550/arXiv.2008.08735

[215] D. F. Gomes, P. Paoletti, and S. Luo, “Generation of GelSight Tactile Images for
Sim2Real Learning,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp. 4177–
4184, Apr. 2021, issn: 2377-3766. doi: 10.1109/LRA.2021.3063925.

[216] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: A Versatile and Scalable Robot
Simulation Framework,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Nov. 2013, pp. 1321–1326. doi: 10.1109/IROS.2013.6696520.

[217] OpenGL. [Online]. Available: https://www.opengl.org/ (visited on 09/10/2024).

[218] J. Lee, M. Grey, S. Ha, et al., “DART: Dynamic Animation and Robotics Toolkit,”
The Journal of Open Source Software, vol. 3, p. 500, Feb. 2018. doi: 10.21105/
joss.00500.

[219] M. Macklin, M. Müller, N. Chentanez, and T.-Y. Kim, “Unified Particle Physics
for Real-Time Applications,” ACM Transactions on Graphics, vol. 33, no. 4, 153:1–
153:12, Jul. 2014, issn: 0730-0301. doi: 10.1145/2601097.2601152.

[220] M. Matl, Pyrender. [Online]. Available: https://github.com/mmatl/pyrender
(visited on 09/10/2024).

[221] B. Calli, A. Singh, A. Walsman, et al., “The YCB Object and Model Set: Towards
Common Benchmarks for Manipulation Research,” in 2015 International Confer-
ence on Advanced Robotics (ICAR), Jul. 2015, pp. 510–517. doi: 10.1109/ICAR.
2015.7251504.

[222] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi, “Describing Tex-
tures in the Wild,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Jun. 2014, pp. 3606–3613. doi: 10.1109/CVPR.2014.461.

[223] Free Stock Textures. [Online]. Available: https://freestocktextures.com/ (vis-
ited on 09/10/2024).

[224] Texture Ninja. [Online]. Available: http : / / textureninja . com (visited on
09/10/2024).

[225] E. Angel and D. Shreiner, Interactive Computer Graphics: A Top-Down Approach
with WebGL, 7th ed. Pearson, Feb. 2014, isbn: 9780133574845.

[226] Multiclass Confusion Matrix for Object Detection, May 2023. [Online]. Available:
https://www.tenyks.ai/blog/multiclass-confusion-matrix-for-object-

detection (visited on 09/22/2024).

[227] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2, 2019. [On-
line]. Available: https://github.com/facebookresearch/detectron2 (visited on
09/10/2024).

183

https://doi.org/10.1109/LRA.2021.3063925
https://doi.org/10.1109/IROS.2013.6696520
https://www.opengl.org/
https://doi.org/10.21105/joss.00500
https://doi.org/10.21105/joss.00500
https://doi.org/10.1145/2601097.2601152
https://github.com/mmatl/pyrender
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/ICAR.2015.7251504
https://doi.org/10.1109/CVPR.2014.461
https://freestocktextures.com/
http://textureninja.com
https://www.tenyks.ai/blog/multiclass-confusion-matrix-for-object-detection
https://www.tenyks.ai/blog/multiclass-confusion-matrix-for-object-detection
https://github.com/facebookresearch/detectron2

[228] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information Pro-
cessing Systems, vol. 32, Curran Associates, Inc., 2019. [Online]. Available:
https : / / papers . nips . cc / paper _ files / paper / 2019 / hash /

bdbca288fee7f92f2bfa9f7012727740-Abstract.html (visited on 09/10/2024).

[229] T.-Y. Lin, P. Dollár, R. Girshick, et al., “Feature Pyramid Networks for Object
Detection,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Jul. 2017, pp. 936–944. doi: 10.1109/CVPR.2017.106.

[230] J. Lee, B. Bagheri, and H.-A. Kao, “A Cyber-Physical Systems Architecture for
Industry 4.0-Based Manufacturing Systems,” Manufacturing Letters, vol. 3, pp. 18–
23, Jan. 2015, issn: 2213-8463. doi: 10.1016/j.mfglet.2014.12.001.

[231] Robotic Operating System. [Online]. Available: https://www.ros.org (visited on
09/10/2024).

[232] ROS Wrapper for Intel RealSense Devices. [Online]. Available: https://github.
com/IntelRealSense/realsense-ros (visited on 09/10/2024).

[233] Universal Robots ROS Driver. [Online]. Available: https : / / github . com /

UniversalRobots/Universal_Robots_ROS_Driver (visited on 09/10/2024).

[234] F. Exner, Universal Robot. [Online]. Available: https://github.com/fmauch/
universal_robot (visited on 09/10/2024).

[235] D. Ordonez, Robotiq 2-Finger Grippers. [Online]. Available: https://github.com/
Danfoa/robotiq_2finger_grippers (visited on 09/10/2024).

[236] Tossy, YOLO V4 for Darknet ROS. [Online]. Available: https://github.com/
Tossy0423/yolov4-for-darknet_ros (visited on 09/10/2024).

[237] K. Kleeberger, R. Bormann, W. Kraus, and M. F. Huber, “A Survey on Learning-
Based Robotic Grasping,” Current Robotics Reports, vol. 1, no. 4, pp. 239–249, Dec.
2020, issn: 2662-4087. doi: 10.1007/s43154-020-00021-6.

[238] H. Zhang, X. Lan, S. Bai, et al., “ROI-Based Robotic Grasp Detection for Object
Overlapping Scenes,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Nov. 2019, pp. 4768–4775. doi: 10.1109/IROS40897.
2019.8967869.

[239] M. Görner, R. Haschke, H. Ritter, and J. Zhang, “MoveIt! Task Constructor for
Task-Level Motion Planning,” in 2019 International Conference on Robotics and
Automation (ICRA), May 2019, pp. 190–196. doi: 10.1109/ICRA.2019.8793898.

184

https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://papers.nips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1016/j.mfglet.2014.12.001
https://www.ros.org
https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/UniversalRobots/Universal_Robots_ROS_Driver
https://github.com/fmauch/universal_robot
https://github.com/fmauch/universal_robot
https://github.com/Danfoa/robotiq_2finger_grippers
https://github.com/Danfoa/robotiq_2finger_grippers
https://github.com/Tossy0423/yolov4-for-darknet_ros
https://github.com/Tossy0423/yolov4-for-darknet_ros
https://doi.org/10.1007/s43154-020-00021-6
https://doi.org/10.1109/IROS40897.2019.8967869
https://doi.org/10.1109/IROS40897.2019.8967869
https://doi.org/10.1109/ICRA.2019.8793898

[240] E. Marchand, F. Spindler, and F. Chaumette, “ViSP for Visual Servoing: A Generic
Software Platform with a Wide Class of Robot Control Skills,” IEEE Robotics and
Automation Magazine, vol. 12, no. 4, p. 40, Dec. 2005, issn: 1070-9932. doi: 10.
1109/MRA.2005.1577023.

[241] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull, “Active Domain Random-
ization,” arXiv, Jul. 2019. doi: 10.48550/arXiv.1904.04762.

[242] S. Luo, H. Kasaei, and L. Schomaker, “Accelerating Reinforcement Learning for
Reaching Using Continuous Curriculum Learning,” in 2020 International Joint
Conference on Neural Networks (IJCNN), Jul. 2020, pp. 1–8. doi: 10 . 1109 /

IJCNN48605.2020.9207427.

[243] J. Ferret, O. Pietquin, and M. Geist, “Self-Imitation Advantage Learning,” arXiv,
Dec. 2020. doi: 10.48550/arXiv.2012.11989.

[244] Q. Gallouédec, N. Cazin, E. Dellandréa, and L. Chen, “Panda-Gym: Open-Source
Goal-Conditioned Environments for Robotic Learning,” arXiv, Dec. 2021. doi: 10.
48550/arXiv.2106.13687.

[245] M. Plappert, M. Andrychowicz, A. Ray, et al., “Multi-Goal Reinforcement Learning:
Challenging Robotics Environments and Request for Research,” arXiv, Mar. 2018.
doi: 10.48550/arXiv.1802.09464.

[246] J. Fu, A. Kumar, O. Nachum, G. Tucker, and S. Levine, “D4RL: Datasets for Deep
Data-Driven Reinforcement Learning,” arXiv, Feb. 2021. doi: 10.48550/arXiv.
2004.07219.

[247] R. S. Sutton, “Learning to Predict by the Methods of Temporal Differences,” Ma-
chine Learning, vol. 3, no. 1, pp. 9–44, Aug. 1988, issn: 1573-0565. doi: 10.1007/
BF00115009.

[248] D. Kumaran, D. Hassabis, and J. L. McClelland, “What Learning Systems do Intel-
ligent Agents Need? Complementary Learning Systems Theory Updated,” Trends
in Cognitive Sciences, vol. 20, no. 7, pp. 512–534, Jul. 2016, issn: 1364-6613. doi:
10.1016/j.tics.2016.05.004.

[249] Q. Gallouédec, Panda-Gym Documentation. [Online]. Available: https://github.
com/qgallouedec/panda-gym (visited on 11/10/2024).

[250] Gymnasium-Robotics Fetch Documentation. [Online]. Available: https : / /

robotics.farama.org/envs/fetch/index.html (visited on 11/10/2024).

[251] Gymnasium-Robotics PointMaze Documentation. [Online]. Available: https : / /

robotics.farama.org/envs/maze/point_maze.html (visited on 11/10/2024).

185

https://doi.org/10.1109/MRA.2005.1577023
https://doi.org/10.1109/MRA.2005.1577023
https://doi.org/10.48550/arXiv.1904.04762
https://doi.org/10.1109/IJCNN48605.2020.9207427
https://doi.org/10.1109/IJCNN48605.2020.9207427
https://doi.org/10.48550/arXiv.2012.11989
https://doi.org/10.48550/arXiv.2106.13687
https://doi.org/10.48550/arXiv.2106.13687
https://doi.org/10.48550/arXiv.1802.09464
https://doi.org/10.48550/arXiv.2004.07219
https://doi.org/10.48550/arXiv.2004.07219
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1016/j.tics.2016.05.004
https://github.com/qgallouedec/panda-gym
https://github.com/qgallouedec/panda-gym
https://robotics.farama.org/envs/fetch/index.html
https://robotics.farama.org/envs/fetch/index.html
https://robotics.farama.org/envs/maze/point_maze.html
https://robotics.farama.org/envs/maze/point_maze.html

[252] Spinning Up Documentation of Soft Actor-Critic. [Online]. Available: https://
spinningup . openai . com / en / latest / algorithms / sac . html (visited on
09/10/2024).

[253] R. Agarwal, D. Schuurmans, and M. Norouzi, “An Optimistic Perspective on Offline
Reinforcement Learning,” in Proceedings of the 37th International Conference on
Machine Learning, PMLR, Nov. 2020, pp. 104–114. [Online]. Available: https:
//proceedings.mlr.press/v119/agarwal20c.html (visited on 09/10/2024).

[254] A. P. Badia, B. Piot, S. Kapturowski, et al., “Agent57: Outperforming the Atari
Human Benchmark,” in Proceedings of the 37th International Conference on Ma-
chine Learning, PMLR, Nov. 2020, pp. 507–517. [Online]. Available: https://
proceedings.mlr.press/v119/badia20a.html (visited on 09/10/2024).

[255] J. Zhang, J. Huang, S. Jin, and S. Lu, Vision-Language Models for Vision Tasks:
A Survey, Feb. 2024. doi: 10.48550/arXiv.2304.00685.

[256] M. Coeckelbergh, AI Ethics. The MIT Press, 2020, isbn: 9780262538190.

[257] Regulation (EU) 2024/1689 of the European Parliament and of the Council of 13
June 2024 laying down harmonised rules on artificial intelligence and amending
Regulations (EC) No 300/2008, (EU) No 167/2013, (EU) No 168/2013, (EU)
2018/858, (EU) 2018/1139 and (EU) 2019/2144 and Directives 2014/90/EU, (EU)
2016/797 and (EU) 2020/1828 (Artificial Intelligence Act), Legislative Body: CON-
SIL, EP, Jun. 2024. [Online]. Available: http://data.europa.eu/eli/reg/2024/
1689/oj/eng (visited on 11/06/2024).

[258] S. Russell and P. Norvig, “Artificial Intelligence: A Modern Approach,” in 3rd ed.
Prentice Hall, 2010, pp. 1–16, isbn: 9780134610993.

[259] R. Bellman, An Introduction to Artificial Intelligence: Can Computers Think? Boyd
and Fraser Publishing Company, 1978, isbn: 9780878350667.

[260] E. Charniak and D. V. McDermott, Introduction to Artificial Intelligence. Addison-
Wesley, 1985, isbn: 9780201119459.

[261] R. Kurzweil, The Age of Intelligent Machines. MIT Press, 1990, isbn:
9780262610797.

[262] D. Poole, A. Mackworth, and R. Goebel, Computational Intelligence: A Logical
Approach. Oxford University Press, 1998, isbn: 9780195102703.

[263] Z. Liu, Y. Wang, S. Vaidya, et al., KAN: Kolmogorov-Arnold Networks, May 2024.
doi: 10.48550/arXiv.2404.19756.

186

https://spinningup.openai.com/en/latest/algorithms/sac.html
https://spinningup.openai.com/en/latest/algorithms/sac.html
https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/agarwal20c.html
https://proceedings.mlr.press/v119/badia20a.html
https://proceedings.mlr.press/v119/badia20a.html
https://doi.org/10.48550/arXiv.2304.00685
http://data.europa.eu/eli/reg/2024/1689/oj/eng
http://data.europa.eu/eli/reg/2024/1689/oj/eng
https://doi.org/10.48550/arXiv.2404.19756

[264] A. K. Kolmogorov, “On The Representation of Continuous Functions of Several
Variables by Superposition of Continuous Functions of One Variable and Addition,”
Doklady Akademii Nauk SSSR, vol. 114, pp. 369–373, 1957.

[265] L. Brunke, M. Greeff, A. W. Hall, et al., “Safe Learning in Robotics: From
Learning-Based Control to Safe Reinforcement Learning,” Annual Review of Con-
trol, Robotics, and Autonomous Systems, vol. 5, pp. 411–444, May 2022, issn: 2573-
5144. doi: 10.1146/annurev-control-042920-020211.

[266] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, 2017, isbn: 978-0-9759377-3-0.

[267] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Prentice Hall,
1996, isbn: 9780134565675.

[268] D. Mayne, M. Seron, and S. V. Raković, “Robust Model Predictive Control of Con-
strained Linear System with Bounded Disturbances,” Automatica, vol. 41, pp. 219–
224, Feb. 2005. doi: 10.1016/j.automatica.2004.08.019.

[269] E. Altman, Constrained Markov Decision Processes. Chapman and Hall/CRC, 1999.

[270] A. Nilim and L. El Ghaoui, “Robust Control of Markov Decision Processes with
Uncertain Transition Matrices,” Operations Research, vol. 53, no. 5, pp. 780–798,
Oct. 2005, issn: 0030-364X. doi: 10.1287/opre.1050.0216.

[271] W. Zhao, T. He, R. Chen, T. Wei, and C. Liu, “State-Wise Safe Reinforcement
Learning: A Survey,” arXiv, Jun. 2023. doi: 10.48550/arXiv.2302.03122.

[272] G. Dalal, K. Dvijotham, M. Vecerik, et al., “Safe Exploration in Continuous Action
Spaces,” arXiv, Jan. 2018. doi: 10.48550/arXiv.1801.08757.

[273] K. Srinivasan, B. Eysenbach, S. Ha, J. Tan, and C. Finn, “Learning to be Safe: Deep
RL with a Safety Critic,” arXiv, Oct. 2020. doi: 10.48550/arXiv.2010.14603.

[274] H. Bharadhwaj, A. Kumar, N. Rhinehart, et al., “Conservative Safety Critics for
Exploration,” arXiv, Apr. 2021. doi: 10.48550/arXiv.2010.14497.

[275] B. Thananjeyan, A. Balakrishna, S. Nair, et al., “Recovery RL: Safe Reinforcement
Learning With Learned Recovery Zones,” IEEE Robotics and Automation Letters,
vol. 6, no. 3, pp. 4915–4922, Jul. 2021, issn: 2377-3766. doi: 10.1109/LRA.2021.
3070252.

[276] K. P. Wabersich and M. N. Zeilinger, “Linear Model Predictive Safety Certification
for Learning-Based Control,” in 2018 IEEE Conference on Decision and Control
(CDC), Dec. 2018, pp. 7130–7135. doi: 10.1109/CDC.2018.8619829.

187

https://doi.org/10.1146/annurev-control-042920-020211
https://doi.org/10.1016/j.automatica.2004.08.019
https://doi.org/10.1287/opre.1050.0216
https://doi.org/10.48550/arXiv.2302.03122
https://doi.org/10.48550/arXiv.1801.08757
https://doi.org/10.48550/arXiv.2010.14603
https://doi.org/10.48550/arXiv.2010.14497
https://doi.org/10.1109/LRA.2021.3070252
https://doi.org/10.1109/LRA.2021.3070252
https://doi.org/10.1109/CDC.2018.8619829

[277] K. P. Wabersich, L. Hewing, A. Carron, and M. N. Zeilinger, “Probabilistic Model
Predictive Safety Certification for Learning-Based Control,” arXiv, Jan. 2021. doi:
10.48550/arXiv.1906.10417.

[278] K. P. Wabersich and M. N. Zeilinger, “A Predictive Safety Filter for Learning-
Based Control of Constrained Nonlinear Dynamical Systems,” arXiv, May 2021.
doi: 10.48550/arXiv.1812.05506.

[279] S. P. Singh and R. S. Sutton, “Reinforcement Learning with Replacing Eligibility
Traces,” Machine Learning, vol. 22, no. 1, pp. 123–158, Mar. 1996, issn: 1573-0565.
doi: 10.1007/BF00114726.

[280] H. van Seijen, H. van Hasselt, S. Whiteson, and M. Wiering, “A Theoretical and
Empirical Analysis of Expected Sarsa,” in 2009 IEEE Symposium on Adaptive Dy-
namic Programming and Reinforcement Learning, May 2009, pp. 177–184. doi:
10.1109/ADPRL.2009.4927542.

188

https://doi.org/10.48550/arXiv.1906.10417
https://doi.org/10.48550/arXiv.1812.05506
https://doi.org/10.1007/BF00114726
https://doi.org/10.1109/ADPRL.2009.4927542

	Abstract
	Kivonat
	Acknowledgements
	List of Figures
	List of Tables
	List of Algorithms
	Abbreviations
	Summary of Notation
	Introduction
	Context: Adaptive robots
	Problem statement: Transferability and universality
	Contribution
	Outline

	Theoretical background
	Computer vision
	Problem formulation
	Convolutional neural networks
	Vision transformers
	Image classification
	Object detection and pose estimation

	Transfer learning
	Definitions and notations
	Sim2real object detection

	Reinforcement learning
	Markov decision process
	Multi-goal tasks
	Reward functions
	Demonstrations
	Categorization of RL algorithms
	Tabular reinforcement learning
	Reinforcement learning in robotics
	Evaluation of RL algorithms

	Curriculum learning
	Easy2hard curriculum learning
	Generalised curriculum learning
	CL in supervised learning
	CL in reinforcement learning

	Sim2real knowledge transfer for object detection
	Introduction
	Related work
	The S2R-ObjDet method
	Sim2real knowledge transfer
	Data generation
	Training

	Evaluation protocol
	Generalised confusion matrix for object detection
	The InO-10-190 dataset
	Results
	Zero-shot transfer (ZST)
	One-shot transfer (OST)

	Ablation study
	Seed
	Texture and post-processing
	Data size
	Gravity, positional disturbance, and bounding-box calculation
	Cutouts
	Faster R-CNN

	Robotic application
	Conclusion

	Sim2real grasp pose estimation
	Introduction
	Problem statement
	Related works
	Approach
	Object detection with S2R-ObjDet
	ROI cropping
	Orientation estimation with S2R-PosEst
	Pattern matching (optional)

	Robot control architecture
	Results
	Setting of the robotic experiments
	Object detection
	Orientation estimation
	Robotic grasping

	Conclusion

	Highlight experience replay
	Introduction
	Related works
	Data exploitation
	Data collection

	Method
	HiER
	E2H-ISE
	HiER+

	Results
	Evaluation protocol
	Aggregated results across all tasks
	Panda-Gym
	Gymnasium-Robotics Fetch
	Gymnasium-Robotics PointMaze
	Qualitative evaluation
	HiER , HiER , and E2H-ISE c versions
	TD3 and DDPG

	Conclusion

	Conclusions
	Summary of thesis achievements
	Future work

	APPENDICES
	Machine learning
	Context
	Formulation
	Neural networks
	Deep learning

	Control theory and reinforcement learning
	Safe reinforcement learning
	Tabular reinforcement learning
	Detailed results of HiER and HiER+
	References

