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Abstract

The deep learning revolution has fundamentally reshaped numerous fields, including
robotics. However, as in other fields, certain challenges must be overcome to exploit the
power of deep learning algorithms and create truly adaptive intelligent robots. The diffi-
culty lies less in adult-level intelligence than in the skills of perception and mobility, also
referred to as Moravec’s paradox. In this context, the key issues are transferability and uni-
versality. This thesis addresses data-driven robotics, with a focus on transfer and curriculum
learning. My main contributions are as follows.

Robots operating in unstructured environments need to effectively sense and interpret
their surroundings. A major challenge for deep learning models in the field of robotics is the
lack of domain-specific labelled data for various industrial applications. To bridge the reality
gap, I developed a sim2real transfer learning method based on domain randomization for
object detection (S2R-ObjDet), enabling automatic generation of labelled synthetic data. In
addition, I propose the generalised confusion matrix (GCM) which addresses the limitations
of the classical precision-recall-based metrics. I also introduce a public and annotated real-
world dataset of industrial objects (InO-10-190) for evaluating sim2real object detection
methods.

In object manipulation, it is essential to estimate not only object positions but also
their poses. Thus, I propose two vision-based, multi-object grasp pose estimation models –
the real-time MOGPE-RT and the high-precision MOGPE-HP – as well as the extension
of the S2R-ObjDet method to pose estimation (S2R-PosEst). This framework provides an
industrial tool for rapid data generation and model training while requiring minimal data
from the target distribution.

Reinforcement learning – inspired by human learning – aims to offer a universal solution
to various problems. Nevertheless, the field of robotics poses significant challenges. To
facilitate the exploration of reinforcement learning robot agents, I propose a data exploitation
curriculum learning method, called highlight experience replay (HiER). The experimental
results demonstrate that HiER significantly improves the performance of the state-of-the-art,
exhibiting stochastic dominance over them. To further enhance HiER, I introduce HiER+,
which integrates an arbitrary data collection curriculum learning method for which I propose
the easy2hard initial state entropy method (E2H-ISE).

Although the results presented in this thesis are my own, henceforth, I will use plural
wording for stylistic purposes. The implementations, the qualitative results, the video presen-
tations, and further materials are available on the project site: www.danielhorvath.eu/thesis.
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Introduction

Deep learning (DL) is often regarded as the flagship of the modern artificial intelligence (AI)
revolution. It has significantly transformed numerous fields including robotics. However,
several challenges remain to be solved in order to fully harness the potential of DL algorithms
and develop truly adaptive intelligent robots. This thesis tackles some of the key challenges
in data-driven robotics, with a particular emphasis on transfer and curriculum learning.
Due to space constraints, readers are encouraged to refer to the thesis for a more detailed
introduction.

Sim2real knowledge transfer for object detection

Robots operating in unstructured environments must be capable of sensing and interpreting
their surroundings. One of the main obstacles to deep-learning-based models in the field
of robotics is the lack of domain-specific labelled data for different industrial applications.
Thus, our first research question is the following: How to transfer knowledge from
simulation to the real world in the case of object detection? Our theses regarding
the first research question are as follows:

Thesis I: The synthetic images generated by our sim2real domain randomization method
(S2R-ObjDet) enable object detection models to learn general representations of the objects,
thereby bridging the gap between simulation and real-world environments.

We propose S2R-ObjDet, a domain-randomization-based sim2real synthetic data generation
method for object detection. The 3D models of the given objects are loaded in the simulator,
each with a random texture or monochromatic colour. Both the number and types of objects
are randomised. Simulating gravitational force, the objects are dropped to a plane where they
end up in one of their stable positions. The camera extrinsic and intrinsic parameters are
set randomly with some constraints to ensure that the given objects are in the field of view.
After an image is rendered, a post-processing method is applied to it involving multi-colour
pepper-and-salt noise, gaussian blur, and optionally rectangular, circular, and line cutouts.
The ground truth annotations of each object are automatically computed based on all points
of the objects instead of the 8-points of the axis-aligned bounding boxes of the objects. This
process is repeated until the required number of images for the training dataset is generated.
S2R-ObjDet is capable of shrinking the reality gap between simulation and the real world to
a satisfactory level, achieving 86.32% and 97.38% mAP50 scores respectively in the case of
zero-shot and one-shot transfers, on our publicly available manually annotated InO-10-190
dataset, containing 190 real images of 920 object instances of 10 classes. The class selection
was simultaneously based on different and similar objects in order to test the robustness of
the model in terms of detecting different classes and differentiating between similar objects.
Our solution fits industrial needs as the data generation process requires less than 0.5s per
image enabling a fast training process. The training pipeline is presented in Fig. 1. This
thesis is associated with [1].

2



Data Generator

Training Dataset Validation
Dataset Test Dataset

Taking Real
Images

Training

ModelPretrained Model Evaluation

Synthetic images Task specific real images

Virtual / Simulation Domain

Automatic
Annotation

Real Domain

Set of
Hyperparameters

Set of
Parameters

3D Models

 : Synthetic images
 : Object detection

 : Task specific real images
 : Object detection

 : General real images
 : Classification  

General real images

Manual
Annotation

Figure 1: Top. Pipeline of knowledge transfer. Bottom. Flowchart diagram of our data
generation, training, and evaluation process. The picture of the Boston bull is from Ima-
geNet [9].

Thesis II: In object detection, misclassifications, false positives, and false negatives – factors
not captured by traditional metrics – can be effectively quantified and evaluated using our
generalised confusion matrix (GCM).

Our novel generalised confusion matrix (GCM) – depicted in Fig. 2 – is an adaptation of the
classical confusion matrix to object detection. It addresses the limitations of the traditional
precision-recall-based mAP and F1 scores. Using the GCM, errors from misclassification,
false positives, and false negatives can be effectively quantified and evaluated. Compared to
the traditional confusion matrix D ∈ NC×C, where C ∈ N is the number of the classes, in our
GCM Dgen ∈ NC+1×C+1, one extra row and one extra column are added to the false positives
and the false negatives cases. The correct detections are in the diagonal, Dgen

i,i , as in the case
of the standard confusion matrix. Dgen

C+1,C+1
.
= 0. This thesis is associated with [1].

Our implementation, a quantitative and a qualitative evaluation, a video presentation,
and further materials are available on the project site: www.danielhorvath.eu/sim2real.
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Figure 2: Generalised confusion matrix (GCM).

Sim2real grasp pose estimation

In the previous section, our sim2real domain randomization method was presented, focusing
on object detection. Nevertheless, in object manipulation, it is essential to estimate not
only object positions but also their orientations. Thus, our second research question is the
following: How to extend our S2R-ObjDet method to multi-object grasp pose
estimation? Our theses regarding the second research question are as follows:

Thesis III: Our novel two-stage multi-object grasp pose estimation methods – the real-time
MOGPE-RT and the high-precision MOGPE-HP – enable a modular training approach for
multi-object grasp pose estimation by utilizing sequential phases of object detection and
class-specific orientation estimation.

We propose two vision-based, multi-object grasp pose estimation models – the real-time
MOGPE-RT and the high-precision MOGPE-HP – depicted in Fig. 3. Both models are
built upon two core components: an object detection model and an orientation estimation
model. The output of the object detection model is y = {(bi, cclassi , pconi ) | i = 1, 2, . . . , N},
where bi = [xi, yi, wi, hi] ∈ [0, 1]4 represents the axis-aligned bounding box of the ith detection,
cclassi ∈ N is the class label of the ith detection, pconi ∈ [0, 1] is the confidence score of the ith

detection, and N ∈ N is the number of detected objects. The detections with pconi < τcon
are filtered out, where τcon ∈ [0, 1] is the confidence threshold. The ROI cropping module
extracts specific objects from the image and resizes them to the appropriate dimensions and
shape. The class-specific orientation estimation models compute the sin(θi) and cos(θi) for
all objects, where θi ∈ [−π, π] is the orientation angle. Then, with the atan2 function, the
θi angles are computed which is the output of the MOGPE-RT model. In the case of the
MOGPE-HP model, an additional local pattern-matching algorithm is incorporated, allowing
for the estimation of a more precise θ∗ ∈ [−π, π] at the expense of the extra computation.
This thesis is associated with [4].
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Thesis IV: Our novel S2R-PosEst method facilitates rapid synthetic data generation for
single-class orientation estimation models, effectively bridging the reality gap.

We propose S2R-PosEst, a sim2real domain randomization method for pose estimation,
based on our S2R-ObjDet method. The 3D model of the given object is placed in the simulator
and rotated around the z-axis – perpendicular to the plane where the object is placed – while
random textures are added to the plane and to the object as well. All together, there are
nrot = ⌊ 2π

βres
⌋ rotations, where nrot ∈ N is the number of rotation and βres ∈ R is the resolution

in radian. For each rotation, an image is taken and the label is automatically generated
with it. The data generation requires 0.25–0.5s per image, making it suitable for industrial
applications. This thesis is associated with [4].

Our implementation, a quantitative and a qualitative evaluation, a video presentation,
and further materials are available on the project site: www.danielhorvath.eu/mogpe.

Figure 3: Top. Illustration of our S2N-ObjDet and S2N-PosEst methods. Bottom.
Flowchart diagram of our multi-object grasp pose estimation (MOGPE) methods.

5

http://www.danielhorvath.eu/mogpe/


Highlight experience replay

In the previous sections, the main focus was on transferring knowledge from simulation
to the real world in cases of supervised learning problems, namely object detection and
pose estimation. Nonetheless, the endeavour for adaptive robots is coupled not only with
transferability but universality as well. It is important to note that universal solutions
are – by definition – easily transferable. An important building block in this attempt might
be reinforcement learning (RL). Similarly to humans, RL algorithms learn from trial and
error through interactions with the environment. Compared to supervised learning, RL is
especially beneficial for robotic tasks that require a high level of dexterity. Nevertheless, the
field of robotics poses significant challenges as the state and action spaces are continuous,
and the reward function is predominantly sparse. Furthermore, on many occasions, the agent
is devoid of access to any form of demonstration. Thus, our first research question is the
following: How to improve the training process of state-of-the-art reinforcement
learning algorithms with curriculum learning? Our theses regarding the third research
question are as follows:

Thesis V: Our novel highlight experience replay (HiER) method enhances the training of
reinforcement learning agents by separately storing and replaying the most relevant experi-
ences, leading to a significant improvement in state-of-the-art performance.

Inspired by human learning, we propose HiER, the highlight experience replay method. A sec-
ondary experience replay buffer is created to store the most relevant transitions. At training,
the transitions are sampled from both the standard experience replay buffer and the highlight
experience replay buffer. It can be added to any off-policy RL agent and applied with or with-
out the techniques of hindsight experience replay (HER) and prioritized experience replay
(PER). HiER is depicted in Fig. 4 and detailed in Algorithm 1a. If only positive experiences
are stored in its buffer, HiER can be viewed as a special, automatic demonstration generator
as well. HiER is classified as a data exploitation or implicit curriculum learning method.
HiER significantly improves the performance of RL baselines, having stochastic dominance
over the state-of-the-art, validated on 8 tasks of three robotic benchmarks. This thesis is
associated with [2].

aDue to the page limits, see Algorithm 1 in the Thesis.
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Thesis VI: Our novel HiER+ approach enhances our highlight experience replay (HiER)
method by increasing the availability of positive experiences – achieved through controlling
task difficulty – particularly during the early stages of the training.

We propose HiER+ which is an enhancement of HiER with an arbitrary data collection
(traditional) curriculum learning method. The overview of HiER+ is depicted in Fig.4 and
detailed in Algorithm 2a. Furthermore, as an example of the data collection CL method, we
propose E2H-ISE, a universal, easy-to-implement easy2hard data collection CL method that
requires minimal prior knowledge and controls the initial state-goal entropy (ISE) distribution
H(µ0) which indirectly controls the task difficulty. Our experimental results show that HiER+
further improves HiER’s performance. Moreover, HiER+ demonstrates stochastic dominance
over HiER, based on the results from three robotic tasks of the Panda-Gym benchmark. This
thesis is associated with [2].

aDue to the page limits, see Algorithm 2 in the Thesis.
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Figure 4: Overview of HiER and HiER+.

Our implementation, a quantitative and a qualitative evaluation, a video presentation,
and further materials are available on the project site: www.danielhorvath.eu/hier
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Sim2Real Domain Randomization for Robotic Applications,” IEEE Transactions on

7

http://www.danielhorvath.eu/hier/


Robotics, vol. 39, no. 2, pp. 1225–1243, Apr. 2023, issn: 1941-0468. doi: 10.1109/
TRO.2022.3207619.
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[5] G. Erdős, D. Horváth, and G. Horváth, “Visual Servo Guided Cyber-Physical
Robotic Assembly Cell,” in the 17th IFAC Symposium on Information Control Prob-
lems in Manufacturing (INCOM), ser. IFAC-PapersOnLine, vol. 54, Jan. 2021, pp. 595–
600. doi: 10.1016/j.ifacol.2021.08.068.
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